
UNCLASSIFIED

 UNCLASSIFIED 1

March 2021

Version 2.0

DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited.

.

DoD Enterprise
DevSecOps Strategy
Guide

Unclassified

Unclassified

HanesKL
Cleared

UNCLASSIFIED

 UNCLASSIFIED 2

Document Set Reference:

UNCLASSIFIED

Document Approvals

Approved by:

Jo herman

Chief nformation Officer of the Department of Defense (Acting)

Approved by:

Stacy A. Cummings

Principal Deputy Assistant Secretary of Defense (Acquisition)

Performing the Duties of Under Secretary of Defense for Acquisition and Sustainment

3
Unclassified

UNCLASSIFIED

 UNCLASSIFIED 4

Contents
Executive Summary .. 6
Document Set Structure .. 7

DevSecOps Strategy Guide Document ... 9
DevSecOps Fundamentals Document .. 9
DevSecOps Reference Design Document(s) .. 9

Assumptions ... 10
DevSecOps Defined ... 11
Formal Recognition of the Software Supply Chain ... 12
Construction of Software Factories ... 14
DevSecOps Guiding Principles ... 16

Relentless pursuit of Agile ... 16
Software factories mandate baked-in security .. 17
Integrated, automated & continuous end-to-end testing and monitoring 18
Immutability of infrastructure achieved via “x as Code” design patterns 18
Adoption of Cloud-smart and data-smart architectural motifs throughout 18

DevSecOps Process Overview ... 18
DevSecOps Management and Governance ... 19

Management Structure .. 20
Recommended Governance ... 20
Assessment and Authorization .. 22

Conclusion .. 23

UNCLASSIFIED

 UNCLASSIFIED 5

Figures
Figure 1 Pillars to Achieve Resilient Software Capabilities ... 6
Figure 2 DevSecOps Document Set Overview ... 8
Figure 3 DevSecOps Distinct Lifecycle Phases and Philosophies ... 11
Figure 4 Notional Software Supply Chain ... 13
Figure 5 Normative Software Factory Construct ... 15
Figure 6 DevSecOps Lifecycle Phases, Continuous Feedback Loops, & Control Gates 19
Figure 7 Notional expansion of a single DevSecOps software factory Pipeline.......................... 21

UNCLASSIFIED

 UNCLASSIFIED 6

Executive Summary
Many programs and missions across the Department of Defense (DoD) lack software
development practices that meet industry standards for agility. The majority of current
cybersecurity frameworks (NIST Cybersecurity Framework, ODNI Cyber Threat Framework,
NSA/CSS Technical Cyber Threat Framework v2 (NTCTF), MITRE ATT&CK, etc.) focus
predominately on post-production deployment attack surfaces. Furthermore, every release cycle
is perceived as an uphill battle between development teams that attest to functionality,
operational test and evaluation teams trying to confirm specific functionality, operations teams
struggling to install and operate the product, and security teams bolting on protection
mechanisms as an afterthought. To deliver resilient software capability at the speed of
relevance the department needs to implement strategies that focus on cybersecurity and
survivability across the development process. The DoD isn’t alone in this journey; industry has
already minimized deployment friction through a cultural shift to DevSecOps (development,
security, and operations).

The DoD CIO and the Office of the Under Secretary of Defense for Acquisition and Sustainment
(OUSD A&S) recognize the urgent need to rethink our software development practices and
culture by leveraging the commercial sector for new approaches and best practices.
DevSecOps is such a best practice as it enables the delivery of resilient software capability at
the speed of relevance, a central theme of software modernization across the DoD. DevSecOps
is a proven approach widely adopted by commercial industry and successfully implemented
across multiple DoD pathfinders. DevSecOps is a core tenant of software modernization,
technology transformation, and advancing an organization’s software development ecosystem
to be more resilient, while ensuring cybersecurity and metrics/feedback are paramount.

The DevSecOps software lifecycle approach creates cross-functional teams that unify
historically disparate evolutions – development (Dev), cybersecurity (Sec), and operations
(Ops). As a unified team they follow Agile principles and embrace a culture that recognizes
resilient software is only possible at the intersection of quality, stability, and security, as depicted
in Figure 1.

Figure 1 Pillars to Achieve Resilient Software Capabilities

UNCLASSIFIED

 UNCLASSIFIED 7

The benefits of adopting DevSecOps include:

• Reduced mean-time to production: Reduces the average time it takes from when new
software features are required until they are running in production;

• Increased deployment frequency: Increases how often a new release can be deployed
into the production environment;

• Decreased mean-time to recovery: Decreases the average time it takes to identify and
resolve an issue after a production deployment;

• Decreased change-fail rate: Decreases the probability that a new feature delivered in
production will result in a failure in operations;

• Fully automated risk management: Well defined control gates perform risk
characterization, monitoring, and mitigation as artifacts are released and promoted
through every step, from ideation through production;

• Baked-in Cybersecurity: Software updates and patches delivered at the speed of
relevance.

The DoD Enterprise DevSecOps Strategy, along with its supporting document set, provides
education, best practices, and implementation and operational guidance to Information
Technology (IT) capability providers, IT capability consumers, application teams, and
Authorizing Officials.

Document Set Structure
The momentum and interest in DevSecOps continues to rapidly expand across the DoD and the
Defense Industrial Base (DIB). Early adopters of DevSecOps at the DoD have matured to
proven practitioners; the resulting wave of fast followers has created a set of practitioners
operating at an intermediate skill set level, and as new programs explore adopting DevSecOps,
these novice practitioners are looking for guidance, direction, terminology clarification, and best
practices. This expanding ecosystem justifies the shift from a single document to a document
set, as depicted below in Figure 2. A document set approach better supports novice,
intermediate, and expert practitioners concurrently by enabling them to quickly find the material
they seek to include: a primer on DevSecOps as a strategy, access to fundamental concepts
and succinct explanations of the DevSecOps lifecycle, and/or specific reference design
guidance with deep, technical content.

UNCLASSIFIED

 UNCLASSIFIED 8

Figure 2 DevSecOps Document Set Overview

UNCLASSIFIED

 UNCLASSIFIED 9

DevSecOps Strategy Guide Document
The DevSecOps Strategy Guide (this document) provides an executive summary of
DevSecOps as a whole by establishing a set of strategic guiding principles that every approved
DoD enterprise-wide DevSecOps reference design must support. This document is generally
consumed by PEOs and anyone in non-technical leadership positions.

The strategy guide advocates for a versioned DevSecOps governance process, including a
more rigorous and evolving type of Authorization to Operate (ATO) known as Continuous
Authorization to Operate (cATO). cATO is predicated upon the cyber survivability posture
across the entire software supply chain and is driven by real-time metrics gathered at every
step, compared to the current method which conducts a snapshot in time view once every three
years to authorize networks. The DIB Software Acquisition and Practices (SWAP) study
emphasized the fact that software is never done.1 An implied corollary to this statement is
cyberspace adversaries never quit. The actions taken to achieve a level of cyber survivability
today may be insufficient tomorrow, justifying the need for DevSecOps Reference Designs
linked to a specific version of cATO in order to avoid stale processes that could result in
exposure, or worse, compromise.

DevSecOps Fundamentals Document
The DevSecOps Fundamentals, including associated topic-specific guidebooks and
playbooks, establishes consistent nomenclature, a curated and versioned technology map, and
explores a series of Specific, Measurable, Achievable, Relevant, and Timely (SMART)
performance metrics used to manage and monitor a DevSecOps CI/CD pipeline. Guidebooks
are intended to provide deep knowledge and industry best practices with respect to a specific
topic area. Playbooks consist of one-page plays, structured to consist of a best practice
introduction, salient points, and finally a checklist or call-to-action. The Fundamentals document,
and its associated guidebooks and playbooks, are generally consumed by DoD enterprise
platform providers and specific DoD organization DevSecOps teams that manage (instantiate
and maintain) a specific DevSecOps software factory implementation.

DevSecOps Reference Design Document(s)
DevSecOps Reference Design documents define specific tools, technologies, pipeline
constructs, and architectures. A reference design is independently versioned, and must be built
atop of the Fundamentals document. It should also build from and reference the various
guidebooks and playbooks. The intention is to create a composable reference design capacity
that eliminates redundant or inconsistent definitions. Reference designs are then empowered to
drive continuous improvement and adopting an industry best practice of an “n – 1” support
lifecycle, ensuring programs continuously modernize and avoid stagnant solutions. The
DevSecOps Reference Design documents are generally consumed by DoD program application
teams that develop, secure, and operate mission applications.

1 Defense Innovation Board (DIB), “Software Acquisition and Practices (SWAP) Study.” May 03, 2019,
[Online]. Available: https://innovation.defense.gov/software.

UNCLASSIFIED

 UNCLASSIFIED 10

Assumptions
This document set makes the following assumptions:

• For organizations deploying new business solutions or modernizing existing software
systems, deploying to an approved or provisionally authorized (PA) cloud environment
will become their preferred solution technically and culturally. For weapons systems, the
environment will likely continue to be on premise to facilitate hardware-in-to-loop (HWIL)
testing with embedded systems.

• Rapidly changing technology dictates designing the DevSecOps pipelines and patterns
for flexibility as new development capabilities enter/exit the commercial product market.

• Cybersecurity elements will leverage cloud service provider (CSP) managed service
capabilities where practicable. Teams will aggressively seek to integrate automated
feedback, patching, alerting and other authorized network security measures.

• The DoD Enterprise DevSecOps reference designs aspire to adopt and leverage
industry best practices and standards. Each reference design must name the specific
technologies as an addendum to the capabilities that power its software factory
pipelines. Reference designs are expected to iterate more frequently than the
DevSecOps Strategy Guide, encouraging rapid innovation at a pace closer to industry.
They also must provide specifics around technical capabilities and specific technology
products that power the design.

• Each DoD Enterprise DevSecOps reference design will clearly assert compliance to a
specific version of the DevSecOps Tools and Activities Guide, and approved or
provisionally authorized reference designs must assert compliance using the de facto
software industry standard of n-1 for the major version. This enables common best
practices and the tooling map to evolve over time within the DevSecOps Fundamentals
document and prevents a reference document from inadvertently becoming stale and at
greater risk for exposure or compromise.

• The DoD must acknowledge a lock-in posture; recognizing vendor lock-in, and
recognizing product, version, architecture, platform, skills, legal, and mental lock-in also
exist.2 Avoiding vendor lock-in without considering other types of lock-in is ill-advised.
Finally, nothing is more dangerous than mental lock-in.

• The DevSecOps strategy must have the capability to scale to any type of operational
requirement needing software capabilities, including:

o Business systems

o Command and Control systems

o Embedded and Weapon systems

2 M. Flower, “Don’t get locked up into avoiding lock-in,” [Online]. Available:
https://martinfowler.com/articles/oss-lockin.html [Accessed 8 February 2021].

UNCLASSIFIED

 UNCLASSIFIED 11

o Intelligence Analysis systems

o Autonomous systems

o Human-Machine Collaboration systems

o Artificial Intelligence / Machine Learning systems

o Cybersecurity defensive and offensive systems

The cultural principles espoused by this strategy and within the DevSecOps Fundamentals
document are universally and equally applicable to every DoD Enterprise DevSecOps reference
design.

DevSecOps Defined
DevSecOps describes an organization’s cultural and technical practices, aligning them in such a
way to enable the organization to reduce the gaps between a software developer team, a
security team, and an operations team. Adoption improves processes through daily
collaboration, agile workflows, and a continuous series of feedback loops. Figure 3 visually
depicts DevSecOps distinct phases and philosophies, the specifics of which are elaborated
upon in the DevSecOps Fundamentals document.

Figure 3 DevSecOps Distinct Lifecycle Phases and Philosophies

Pioneering programs using DevSecOps for several years have concretely demonstrated that its
adoption can deliver resilient software capability at the speed of relevance; and by integrating
cybersecurity at every step, as depicted in Figure 3, the cyber survivability of the artifacts and
applications produced is enhanced. DevSecOps strives for faster and more secure software
delivery while achieving consistent governance and control.

UNCLASSIFIED

 UNCLASSIFIED 12

The document set construct acknowledges that there is no uniform set of DevSecOps practices
or tooling. Each DoD organization is expected to tailor its culture and align its DevSecOps
practices to its own unique processes, products, security requirements, and operational
procedures. DevSecOps platforms and their underlying software factories are expensive,
and every DoD organization is encouraged to seek out an existing Reference Design
platform and leverage the cATO that comes with it. Embracing DevSecOps requires
organizations to shift their culture, evolve existing processes, adopt new technologies, and
strengthen governance.

Formal Recognition of the Software Supply Chain
The software supply chain is a logistical pathway that covers the entirety of all hardware,
Infrastructure as a Service (IaaS), Platform as a Service (PaaS), Software as a Service (SaaS),
technology force multipliers, tools and practices that are brought together to deliver specific
software capabilities. A notional software supply chain is depicted in Figure 4.

Software supply chains exist for business systems, weapon systems, and everywhere software
is developed and deployed. It is easy, but naïve and incorrect, to dismiss an embedded system
in a projectile as “isolated” and disconnected. The projectile includes embedded software that
was compiled, including relying on 3rd party libraries and linking to hardware drivers, and relies
upon features of embedded firmware. Additionally, the very performance of the software was
likely tested using model and simulation software executing within a High Performance
Computing (HPC) Cloud.

DevSecOps philosophies span multiple links of the Software Supply Chain. DevSecOps cannot
exist without this logistical supply chain – Integrated Development Environments (IDEs), build
tools, code repositories, artifact repositories, testing software suites, and many others pieces of
software must work together in unison to effectively execute a DevSecOps powered software
factory. The totality of these environments must be considered when evaluating the software
supply chain.

The cybersecurity and risk postures of a specific artifact or application must be calculated using
the product rule across the entirety of the software supply chain. If the compiler is 90% secure,
the code repository is 90% secure, the artifact repository is 90% secure, and the container
orchestrator is 90% secure – the overall system is not 90% secure. The cybersecurity level of
the end-to-end ecosystem is actually .9 * .9 *.9 * .9, or roughly 65% secure. This is why the
creation of hardened DoD Enterprise DevSecOps Reference Designs are so critical;
DevSecOps aims to harness the collective expertise and knowledge across the entire software
supply chain to mitigate risk at each step. Only then can the overall cyber survivability of the
ecosystem significantly increase. To further illustrate this point, if a DevSecOps team only
increases security 5%, raising each level from 90% to 95%, then overall cyber survivability
jumps from 65% to 81%.

UNCLASSIFIED

 UNCLASSIFIED 13

Figure 4 Notional Software Supply Chain

UNCLASSIFIED

 UNCLASSIFIED 14

Construction of Software Factories
Software factories, like the normative example illustrated in Figure 5 Normative Software
Factory Construct, are strongly linked to a specific software supply chain. As in physical
factories, software factories may contain multiple assembly lines, or in software parlance,
pipelines. Each pipeline contains and defines a complete set of tools, process workflows,
scripts, and environments that co-exist to produce a set of production quality software artifacts.
A software supply chain “has a” software factory, but the software factory itself is not an entire
software supply chain.

As in physical factories, automation is a central theme. Software factories employ automation at
multiple levels and across multiple activities in the develop, build, test, and release and deliver
phases of the DevSecOps lifecycle. Each environment in the process is automated to the
maximum extent that is safely and securely possible, rehydrated using Infrastructure as Code (IaC)
and Configuration as Code (CaC) that run on various tools. A software factory is inherently designed
for multi-tenancy and can automate software production for multiple projects.

DoD needs multiple software factories tuned for specific types of software systems, such as
web applications or embedded systems that may include significant amounts of hardware in the
loop (HWIL) for automated testing. It also requires software factories operating at different
information Impact Levels (IL), from IL-2 through IL-6, and above.3 Under the shift to a cATO,
each software factory will have its processes, teams, and storage reviewed and certified to feed
into a continuous monitoring system. Additionally, this shift greatly lessens the initial burden of
achieving an ATO for each piece of software, as the process and roll out is certified and feeds
into a continuous monitoring architecture.

The ingestion of artifacts (“raw ingredients”) from external systems and the subsequent
promotion of value-add artifacts created within the software factory to downstream consumers
requires additional coordination, much of it automated. Software factories and their operations
are covered in-depth in the DevSecOps Fundamentals document.

3 DISA, “Department of Defense Cloud Computing Security Requirements Guide, v1r3,” Mar 6, 2017

UNCLASSIFIED

 UNCLASSIFIED 15

Figure 5 Normative Software Factory Construct

UNCLASSIFIED

 UNCLASSIFIED 16

DevSecOps Guiding Principles
The adoption of DevSecOps, the Software Factories that drive these ecosystems, and cATO
combine to represent a seismic strategic shift in the way DoD procures and delivers resilient
software capability at the speed of relevance. This strategy is captured in the following set of
DevSecOps guiding principles, which are abstract when considered in isolation, but create
guardrails for DevSecOps teams creating and/or working on top of a specific DoD Enterprise
DevSecOps Reference Design. Each of these guiding principles will be unpacked in the
sections that follow to unequivocally explain both the intention and the expectation. The
DevSecOps Guiding Principles are depicted in Table 1.

• Relentless pursuit of Agile principles and culture within a software factory
construct

• Software factories mandate baked-in security via integral and comprehensive
security practices across the entirety of the software supply chain leveraging
Zero Trust (ZT) and behavior detection principles.

• Integrated, automated & continuous end-to-end testing and monitoring, from
ideation through production, with clearly defined control gates for release
candidate promotion

• Immutability of infrastructure achieved via “x as Code” design patterns

• Adoption of Cloud-smart and data-smart architectural motifs throughout
Table 1 DevSecOps Guiding Principles

These guiding principles represent the starting point for establishing common nomenclature and
a curated and versioned approach to DevSecOps adoption. The DevSecOps Fundamentals
document builds on these guiding principles by formalizing each phase of the DevSecOps
lifecycle. The DevSecOps Tools and Activities Guidebook defines the activities individuals
perform on a daily basis when part of a DevSecOps team, and the required and preferred types
of tools required to be considered a DevSecOps team. Further, each DevSecOps Reference
Design builds upon the principles and practices though a layer of specificity covering tool and
processes, addressing technology specific interconnects, and adding additional required and
preferred tools and activities that a team must adopt. When principles, practices, and tools
combine properly, the result is an efficient, transparent, and harmonized software factory that is
capable of delivering new features at the speed of operational relevance, while maintaining the
level of security required to operate in national security environments.

Relentless pursuit of Agile
The Agile Manifesto captures core competencies that define functional relationships that every
DevSecOps team should value:4

• Individuals and Interactions over Processes and Tools
• Working Software over Comprehensive Documentation

4 Beck, K. et. al., 2001. Manifesto for Agile Software Development. [Online]. Available at:
https://agilemanifesto.org.

UNCLASSIFIED

 UNCLASSIFIED 17

• Customer Collaboration over Contract Negotiations
• Responding to Change over Following a Plan

The first core competency emphasizes the value and importance that individuals work together,
but it should not be interpreted that processes and tools are irrelevant. The same holds true for
the other core competencies; documentation is still needed, but not at the cost of working
software; Agile teams still create sprint plans, etc.

The manifesto further defines 12 Principles of Agile Software, offering an additional
reinforcement that teams must prioritize customer engagement.5

The software factory construct is wide-reaching, spanning across acquisition, engineering,
testing, cybersecurity, operations, and even leadership. The adoption of Agile principles and the
shift to DevSecOps can be challenging for many organizations. Leaders want to embrace
DevSecOps but are ill prepared to teach it across their organization and even less prepared to
measure its implementation. Acquisition professionals struggle to understand how to contract
DevSecOps because it is hard to put tangible metrics and a price tag on something largely
viewed as a set of conceptual principles. Uncertainty inherently creates fear and generates bias.
Adoption is always easier when experiential knowledge from similar situations can be identified
and applied. Without this experiential knowledge, bias is unconsciously applied in both
comprehension and decision making. Recognizing these biases is the first step of cultural
change.

The DoD has statutory obligations to evaluate if a given investment produced value based on
the combination of time, resources, and money spent. A study entitled “The Psychology of Sunk
Cost” was conducted and published in the 1985 issue of Organization Behavior and Human
Decisions Processes.6 This study reveals a bias where we tend to commit to something based
on a perception that the reward must be great enough given the investment made. This is why
we chase after a good sale despite the fact that it may be a 3-hour drive and the cost of gas
alone outstrips the savings. Recognition of the sunk cost fallacy is vitally important in adopting
and in executing within a DevSecOps culture.

Software factories mandate baked-in security
In the DoD, security accreditation alone has proven a long and red-tape laden process.
Software factories mandate staunch cyber survivability postures via integral and comprehensive
security practices across the entirety of the software supply chain. DevSecOps weaves
cybersecurity practices throughout each lifecycle phase, shifting cybersecurity practices to the
left, advancing ZT architectures, recognizing the value gained from highly-automated unit,
functional, integration, and security testing. This is a key DevSecOps differentiator; functional
and security capabilities are tested and built simultaneously, with a series of recognized control
gates that aim to prevent defect escapes and enhance the cyber survivability of the software
artifact before release into the next environment. This approach also bakes in metrics that can
be passed on to cyber defenders, enabling for better monitoring and more targeted feedback
returning to engineers for future updates and patches.

5 Beck, K. et. al., 2001. Manifesto for Agile Software Development. [Online]. Available at:
https://agilemanifesto.org/principles.html.
6 Arkes, Hal R. & Blumer, Catherine, 1985. "The psychology of sunk cost," Organizational Behavior and
Human Decision Processes, Elsevier, vol. 35(1), pages 124-140, February.

UNCLASSIFIED

 UNCLASSIFIED 18

Integrated, automated & continuous end-to-end testing and monitoring
The shift towards Continuous Authorization to Operate (cATO) stipulates continuous testing and
monitoring that shifts the risk assessment further left to evaluate the people, platform,
and processes using real-time data-driven metrics. Each program must build and implement a
unique integrated testing and control gate decisional process in partnership with their AO. As a
principle, each of the phases of DevSecOps contribute in their own unique way to the real-time
performance metrics that form the cornerstone of cATO. Continuous monitoring is also required
for ZT effectiveness, as defined in NIST SP 800-27.7

Immutability of infrastructure achieved via “x as Code” design patterns
The shift to immutable infrastructure using Infrastructure as Code, Policy as Code, and
Everything as Code techniques provides security and value in a number of ways. First, it
obviates lethargic and error-prone step-by-step deployment and configuration guides performed
manually. In a legacy, manual driven approach, it is too easy to inadvertently skip a step or
mistype a configuration command. Second, it confirms that the command will execute as
expected, mitigating the risk of a change without any type of peer review before execution.
Third, by providing a standard deployment model, a standard set of outputs can be auto-
ingested into Defensive Cyber Operations (DCO) platforms and data collection/visualization
mediums. This allows DCO to begin instantaneously and provides data analytics to identify the
necessary next innovations.

This guiding principle establishes a clear mandate for automated infrastructure configuration
driven by code. Code can be version controlled, tested, peer reviewed, and its execution (logs)
tracked. The precise practices and tooling approaches are defined further within the
DevSecOps Fundamentals volume and specific software factory platforms, respectively.

Adoption of Cloud-smart and data-smart architectural motifs throughout
There is an optimistic vision that portrays the Cloud as offering endless computing capacity,
guaranteed availability, and lower operational costs. The reality is that an improperly architected
application remains as brittle in a Cloud environment as it did operating in a Regional Data
Center. If not re-architected, it may actually be more unreliable and more expensive to operate.
The shift to Cloud must be accompanied by the adoption of new architectural design patterns
and an overpowering preference to build atop existing enterprise services instead of reinventing
duplicative capabilities.

Further, data generation, transport, and consumption shows no signs of abating. Software
architectures must consciously acknowledge this with smarter application programing interfaces
(API) designs, caching strategies, and data tagging/labeling. Development teams must
understand that even the data produced within the software factory is consequential, especial in
terms of providing an AO with trustworthy cybersecurity metrics that enable and support cATO.

DevSecOps Process Overview
The overall DevSecOps lifecycle phases are covered in-depth in the DevSecOps Fundamentals
document. Figure 6 visually depicts the DevSecOps phases, feedback loops, and control gates.
The lifecycle is built around a series of sprints, with each sprint covering the Plan, Develop,

7 National Institute of Standards and Technology, “NIST Special Publication 800-207, Zero Trust
Architecture.” August, 2020.

UNCLASSIFIED

 UNCLASSIFIED 19

Build, Test, Release & Deliver, Deploy, Operate, and Monitor phases. This graphic contains the
identical set of steps depicted previously in Figure 3 as an infinite loop, but it has been
“unfolded” to effectively illustrate the multiplicity of continuous feedback loops. Visually, the
cybersecurity automation is depicted as the foundational core underpinning all lifecycle phases,
permeating each phase with multiple touch points, and directing actions that are taken based on
real-time metrics derived from actual product usage and performance.

The other feedback loop covered below is the Continuous Monitoring loop. This loop must bring
together a deep, rich set of real-time performance metrics and supporting data to continuously
evaluate the totality of the software environment. This loop serves two main functions;
cybersecurity monitoring to ensure events and incidents are handled in accordance with DoD
mandates and policies and live data feedback and interaction between network defenders and
developers. In doing so, the antiquated snapshot view of network security is replaced with real
time feeds, allowing security actions to be taken by local defenders, monitoring teams
(Cybersecurity Service Providers, or CSSPs), incident response teams (Cyber Protection
Teams, or CPTs) and Command and Control (C2) elements of U.S. Cyber Command/Joint
Force Headquarters – DoD Information Network (JFHQ-DoDIN).

Feedback loops are critical mechanisms that overlap with specific DevSecOps lifecycle phases.
Each feedback loop is built upon transparency and speed. As an illustration, when a software
developer commits code to a branch, a build is automatically triggered to confirm the code still
builds correctly, and if it doesn’t, the developer is immediately notified of the problem. The
DevSecOps Fundamentals document covers each feedback loop and the value it adds to the
software supply chain’s software factory.

Figure 6 DevSecOps Lifecycle Phases, Continuous Feedback Loops, & Control Gates

DevSecOps Management and Governance
Governance in the context of DevSecOps consists of the processes used to actively assess and
manage the risks associated with the mission program throughout the lifecycle. Governance
activities never end; but are now integrated at each step of the process reducing lag time from
inception to production to operations.

UNCLASSIFIED

 UNCLASSIFIED 20

Paramount to the DevSecOps Strategy is that cybersecurity automation must permeate the
entirety of the software supply chain, never being bolted on as an afterthought. DevSecOps
underlying software factory concept is one part of the software supply chain, but it merits
additional scrutiny because this is where sensitive, mission-specific tactics, techniques, and
procedures are converted into sensitive software algorithms. DevSecOps Management and
Governance of the software factory stipulates that a series of cybersecurity control gates
execute deep, meaningful, repeatable, and mission-relevant automated cybersecurity metrics.
In Figure 7, we see one of the pipelines. The black and red diamonds represent the automated
cybersecurity control gates that must be cleared before any artifacts can be promoted between
the disparate development environments (dev, test, pre-prod, etc.).

This automation exemplifies what it means to ensure cybersecurity permeates the entirety of
every phase of DevSecOps. Further, it visually depicts explicit gates where Operational Test &
Evaluation (OT&E) must shift left. This shift allows the team to rapidly identify quality or stability
that should be addressed prior to the promotion of any artifact to the next level. Finally, SMART
performance metrics related to both team performance and cyber survivability are collected at
each control gate, every time. These metrics form one of the bedrock principles behind
cATO, producing a certified software factory.

Management Structure
The management objective of DevSecOps must be both “top-down” and “bottom-up” to balance
the larger strategic goals of software modernization across the DoD. Senior leader buy-in is
crucial for success, though buy-in at the staff level is equally important. This engenders a sense
of ownership, which encourages the appropriate implementation of processes related to
governance and enables team members to support continuous process improvement.
Continuous process improvement – seeking opportunities to simplify and automate whenever
and wherever possible – is essential for governance to keep pace with a rapidly changing world
while implementing a continuous feedback loop to ensure that automation is not done at the
cost of security.

Recommended Governance
Early DevSecOps efforts in the DoD, such as Defense Threat Reduction Agency (DTRA) have
leveraged and adopted commercial best practices with great success. The DTRA Governance
document identifies Five Fundamental Principles of Next Generation Governance (NGG):8

1. Run IT with Mission Discipline: Tie requirements back to your organization’s mission. Every
action should be aligned to the mission. If they are not, then an evaluation should be
performed with continuous process improvement to address how to tie actions to missions.

8 Defense Threat Reduction Agency (DTRA), "Next-Generation Technology Governance," 2018.

UNCLASSIFIED

 UNCLASSIFIED 21

Figure 7 Notional expansion of a single DevSecOps software factory Pipeline

UNCLASSIFIED

 UNCLASSIFIED 22

2. Invest in Automation: Automate everything possible, including actions, business processes,
decisions, approvals, documentation, and more. Automated testing should validate the
design, public interface behaviors, and perform a wide array of functional and security tests.
The documentation generated from these automated activities create the body of evidence
required by the Risk Management Framework (RMF) and for historical audits when needed.

3. Embrace Adaptability: Accept that change can be required at any time, and all options are
available to achieve it. Fail fast, fail small, and fail forward. The typical example of failing
forward is exemplified like this: Consider a production release that fails to operate as
expected. Instead of restoring the software to its pre-deployment state, the developer’s
change should be discrete enough that they can rapidly fix it and address the issue through
a newer release in a comparable period of time.

4. Promote Transparency: Offer open access across the organization to view the activities
occurring within the automated process and to view the auto-generated Artifacts of Record.
Transparency generates an environment for sharing ideas and developing solutions
comprised of Subject Matter Experts (SMEs) or leads from across the enterprise in the form
of cross-functional teams to avoid the “silo effect.” When composed of all representative
stakeholders, the team possesses the skills needed to build a mission system and the
collective ingenuity necessary to overcome all encountered challenges.

5. Inherent Accountability: Push down or delegate responsibility to the lowest level:

• Strategic: This is related to the Change Control Board (CCB) or Technical Review Board
(TRB); it involves “Big Change” unstructured decisions. These infrequent and high-risk
decisions have the potential to shape the strategy and mission of an organization.

• Operational: (Various Scrum) Cross-cutting, semi-structured decisions. In these frequent
and high-risk decisions, a series of small, interconnected decisions are made by different
groups as part of a collaborative, end-to-end decision process.

• Tactical: (Global Enterprise Partners (GEP)/Product Owner/Developers Activities)
Delegated, structured decisions. These frequent and low-risk decisions are effectively
handled by an individual or working team, with limited input from others.

Assessment and Authorization
DoD Instruction (DoDI) 8510.01 is the existing governance policy and defines the processes
that all DoD information system and platform information technology system must follow.
CJCSM 6510.01B defines overall cyber incident handling.9,10 Some of the concepts in modern
software architecture and in DevSecOps present challenges against the current version of that
policy. Some of these include:

• Microservices architecture, where the “system boundary” is in flux;

• Distributed systems, where the is no traditional “system boundary”; and

9 DoDI 8510.01, “Risk Management Framework (RMF) for DoD Information Technology,” March 12, 2014.
10 CJCSM 6510.01B, “Cyber Incident Handling Program,” July 10, 2012.

UNCLASSIFIED

 UNCLASSIFIED 23

• Continuous integration / continuous deployment, where the “system” evolves in a
controlled but rapid fashion.

As the DoD works to finalize its Software Modernization Strategy there is a recognition that the
Department must continuously evaluate and update policies, regulations, and DoD standards
(collectively, “compliance”) as appropriate. Nothing within the four-corners of the DoD Enterprise
DevSecOps Strategy Guide, the DevSecOps Fundamentals document, or any specific DoD
Enterprise DevSecOps reference design can be deemed as overruling existing governance
policies of the department. However, more engaged collaboration, a recognition of the
shortcomings of the current procedures, and a documented appetite to tackle outdated
compliance approaches should be viewed in a positive light.

Conclusion
The adoption and assertion of DevSecOps cultural and philosophical practices are a central
theme of DoD software modernization that will drive the delivery of software capabilities at the
speed of relevance. This document establishes a unified set of DevSecOps guiding principles
for the entirety of the DoD. These principles are weaved throughout the fabric of the other
documents within the DevSecOps document set, visually depicted in Figure 2. In recognizing
the depth and breadth of software development activities across the entirety of the department,
specific DevSecOps Reference Designs empower specificity, demonstrating that neither a one-
size-fits-all nor a one-size-fits most approach is sufficient. The future success and global
relevance of the DoD demands an accelerated adoption of software industry best practices.

	Executive Summary
	Document Set Structure
	DevSecOps Strategy Guide Document
	DevSecOps Fundamentals Document
	DevSecOps Reference Design Document(s)

	Assumptions
	DevSecOps Defined
	Formal Recognition of the Software Supply Chain
	Construction of Software Factories
	DevSecOps Guiding Principles
	Relentless pursuit of Agile
	Software factories mandate baked-in security
	Integrated, automated & continuous end-to-end testing and monitoring
	Immutability of infrastructure achieved via “x as Code” design patterns
	Adoption of Cloud-smart and data-smart architectural motifs throughout

	DevSecOps Process Overview
	DevSecOps Management and Governance
	Management Structure
	Recommended Governance
	Assessment and Authorization

	Conclusion

Accessibility Report

		Filename:

		DoDEnterpriseDevSecOpsStrategyGuide Copy L.pdf

		Report created by:

		

		Organization:

		

[Enter personal and organization information through the Preferences > Identity dialog.]

Summary

The checker found no problems in this document.

		Needs manual check: 2

		Passed manually: 0

		Failed manually: 0

		Skipped: 2

		Passed: 28

		Failed: 0

Detailed Report

		Document

		Rule Name		Status		Description

		Accessibility permission flag		Passed		Accessibility permission flag must be set

		Image-only PDF		Passed		Document is not image-only PDF

		Tagged PDF		Passed		Document is tagged PDF

		Logical Reading Order		Needs manual check		Document structure provides a logical reading order

		Primary language		Passed		Text language is specified

		Title		Passed		Document title is showing in title bar

		Bookmarks		Passed		Bookmarks are present in large documents

		Color contrast		Needs manual check		Document has appropriate color contrast

		Page Content

		Rule Name		Status		Description

		Tagged content		Passed		All page content is tagged

		Tagged annotations		Skipped		All annotations are tagged

		Tab order		Passed		Tab order is consistent with structure order

		Character encoding		Passed		Reliable character encoding is provided

		Tagged multimedia		Passed		All multimedia objects are tagged

		Screen flicker		Passed		Page will not cause screen flicker

		Scripts		Passed		No inaccessible scripts

		Timed responses		Passed		Page does not require timed responses

		Navigation links		Passed		Navigation links are not repetitive

		Forms

		Rule Name		Status		Description

		Tagged form fields		Passed		All form fields are tagged

		Field descriptions		Passed		All form fields have description

		Alternate Text

		Rule Name		Status		Description

		Figures alternate text		Passed		Figures require alternate text

		Nested alternate text		Passed		Alternate text that will never be read

		Associated with content		Passed		Alternate text must be associated with some content

		Hides annotation		Passed		Alternate text should not hide annotation

		Other elements alternate text		Passed		Other elements that require alternate text

		Tables

		Rule Name		Status		Description

		Rows		Passed		TR must be a child of Table, THead, TBody, or TFoot

		TH and TD		Passed		TH and TD must be children of TR

		Headers		Passed		Tables should have headers

		Regularity		Passed		Tables must contain the same number of columns in each row and rows in each column

		Summary		Skipped		Tables must have a summary

		Lists

		Rule Name		Status		Description

		List items		Passed		LI must be a child of L

		Lbl and LBody		Passed		Lbl and LBody must be children of LI

		Headings

		Rule Name		Status		Description

		Appropriate nesting		Passed		Appropriate nesting

Back to Top

