

April 2025
Version 2.5

DISTRIBUTION STATEMENT A. Approved for public release.
Distribution is unlimited.

DoD Enterprise DevSecOps

Activities & Tools Guidebook

HanesKL
Cleared

ii

Trademark Information
Names, products, and services referenced within this document may be the trade names, trademarks, or
service marks of their respective owners. References to commercial vendors and their products or services
are provided strictly as a convenience to our readers, and do not constitute or imply endorsement by the
Department of any non-Federal entity, event, product, service, or enterprise.

iii

Document Set Reference

iv

Contents
1 Introduction ... 1

1.1 Audience and Scope... 1
1.2 Baselines and Tailoring .. 1

2 DevSecOps Lifecycle and Infinity Loop ... 3
3 DevSecOps Phases and Activities .. 5

3.1 Continuous Activities Cross-References ... 7
3.1.1 Security Activities Cross-References .. 7
3.1.2 Test Activities and Tools Cross-References .. 8
3.1.3 Configuration Management Full Lifecycle Activities ...10

3.2 Plan Phase Activities ...11
3.3 Develop Phase Activities ...15
3.4 Build Phase Activities ..20
3.5 Test Phase Activities ...23
3.6 Release Phase Activities ...28
3.7 Deliver Phase Activities ...30
3.8 Deploy Phase Activities ...32

3.8.1 Virtual Machine Deployment ..37
3.8.2 Container Deployment ...37
3.8.3 Serverless Deployment ..37

3.9 Operate Phase Activities ...38
3.10 Monitor Phase Activities ..42
3.11 Feedback Phase Activities ...46

4 DevSecOps Tools ..48

Figures

Figure 1: DevSecOps Distinct Lifecycle Phases and Philosophies ... 4

v

Tables
Table 1: Continuous Security Activities .. 7
Table 2: Continuous Test Activities .. 9
Table 3: Continuous Configuration Management Activities ...11
Table 4: Plan Phase Activities ...12
Table 5: Develop Phase Activities ...16
Table 6: Build Phase Activities ..20
Table 7: Test Phase Activities ...24
Table 8: Release Phase Activities ...28
Table 9: Deliver Phase Activities ...31
Table 10: Deploy Phase Activities ...33
Table 11: Operate Phase Activities ...38
Table 12: Monitor Phase Activities ..43
Table 13: Feedback Phase Activities ..46
Table 14: DevSecOps Tools ...48

1

1 Introduction
Practicing DevSecOps requires a wide range of activities supported by an array of purpose-built tools. This document and the
associated spreadsheet convey the relationship between each DevSecOps phase, the set of activities that occur at each phase, and
a taxonomy of supporting tools for a given phase. While the document and spreadsheet are published separately, they should be
considered a single package. The document is descriptive while the spreadsheet includes the details of each phase and activity. It
is expected that the spreadsheet also be used as a template for:

• submitting new reference designs that include an activity mapping to specific elements of the design
• building a continuous ATO package that demonstrates process and responsibility mapping

The spreadsheet It will also be the basis for future system modeling tools that further expand the details that occur at each activity.

1.1 Audience and Scope
The target audience for these documents include:

• DoD Enterprise DevSecOps platform capability providers
• DoD DevSecOps teams
• DoD programs
• DoD compliance programs leveraging DevSecOps

The Activities and Tools identified are foundational, but incomplete when considered in
isolation. Each DoD Enterprise DevSecOps Reference Design additively defines the complete

set of Activities and Tools required to achieve a specific DevSecOps implementation.

1.2 Baselines and Tailoring
The contents of these documents are generalized and include guidance for all DevSecOps practitioners. Adopters of DevSecOps are
encouraged to tailor the content of these documents to their specific requirements and mission needs, combining the activities and
tools included in these documents to build their processes.

The Baseline column of each Activities table provides guidance for whether a specific Activity is REQUIRED, PREFERRED, or AS
REQUIRED. REQUIRED activities are not negotiable. PREFERRED and AS REQUIRED may be included at the discretion of the
Mission Owner and Authorizing Official.

2

The complexity or frequency of DevSevOps activities may also be scaled upward or downward along a continuum to fit the specific
needs of each adopting organization. Larger organizations, or those with a lower risk tolerance, may choose to perform more or more
frequent activities, while other organizations may choose to perform activities less frequently.

Lastly, each adopter of DevSecOps may manage their work using different approaches or methodologies. DevSecOps is most
frequently adopted using Scrum1 and 2 week Sprints, but may also be successfully adopted using a different Scrum cadence,
Kanban2, or other Agile approach. Waterfall project management approaches are not often flexible enough for the iterative nature of
DevSecOps lifecycles, and often require significant effort to effectively manage the volatility expected from fast-moving DevSecOps
programs.

1 Agile Alliance, “Scrum”, https://www.agilealliance.org/glossary/scrum
2 Agile Alliance, “Kanban”, https://www.agilealliance.org/glossary/kanban

3

2 DevSecOps Lifecycle and Infinity Loop
The DevSecOps software lifecycle is an iterative process addressing the reality that software is never done. The traditional
approach for DOD software, also known as Waterfall, is replaced with frequent minimally viable deliveries that receive feedback and
enable course correction based on production experience. Each delivery is accomplished through a fully automated or semi-
automated process with minimal human intervention. This ensures consistency and accelerates integration and delivery.

The DevSecOps software lifecycle is most often represented as an infinity loop, depicted in Figure 1. This representation emphasizes
that the software development follows a cyclic process overall yet includes sub-cycles for dev and op phases that iterate
independently. Transitions between phases are gated by functional and non-functional test and cybersecurity activities. The infinity
loop includes 10 specific phases: plan, develop, build, test, release, deliver, deploy, operate, monitor, and feedback. Some
descriptions combine the Release and Deliver phases into a single phase and some combine Plan and Feedback into a single
phase. We call out Release and Deliver separately to highlight potential transitions between ATO boundaries in DoD software
factories. We call out Plan and Feedback for the same reason, although the feedback phase typically uses the same tools and is
managed like the plan phase.

Each phase has activities that are performed within the phase, including specific testing and cyber security activities applicable for
the phase.

4

Figure 1: DevSecOps Distinct Lifecycle Phases and Philosophies

The allure of DevSecOps is improved customer outcomes and mission value through modern tools and technologies combined with
automated processes that aid in the delivery of software at the speed of relevance. Automation and monitoring occur at every phase
of the software lifecycle. Improving speed and quality is a primary goal of the DoD’s software modernization effort.

Successful DevSecOps programs adopt an agile software culture and philosophy that is realized through the unification of software
development (Dev), security (Sec) and operations (Ops) personnel into a singular team. Teams new to DevSecOps are encouraged
to start small and build up their capabilities, progressively, striving for continuous process improvement at each of the lifecycle
phases.

5

3 DevSecOps Phases and Activities
The activities in the DevSecOps Activities and Tools Guidebook are common across all DevSecOps ecosystems. An aggregated list
of tools for the DevSecOps activities is available in the spreadsheet under the Tools tab.

Activity tables list a wide range of activities for DevSecOps practices. The activities captured here do not diminish the fact that each
program should define their own unique processes, choose proper and meaningful activities, and select specific tools suitable for
their software development needs. The continuous process improvement that results from the DevSecOps continuous feedback
loops and performance metrics aggregation should drive the increase of automation across each of these activities.

Activities tables include the below columns:

• Activities: Actions that occur within the specific DevSecOps phase
• Baseline: Either a status of REQUIRED, PREFERRED, or AS REQUIRED, where required indicates that the activity must be

performed within the software factory as part of the Minimal Viable Product (MVP) release, and preferred indicates an
aspirational capability obtained as the ecosystem matures

• SSDF: NIST 800-2183 Secure Software Development Framework (SSFD) alignment
• Description: Simple explanation of the activity being performed
• Inputs: Types of data that feed the activity
• Outputs: Types of data that result from the activity
• Tool Dependencies: List of tool categories required to support the activity

Specific reference designs may elevate a specific activity from PREFERRED to REQUIRED,
as well as add additional activities and/or tools that specifically support the nuances of a

given reference design. Reference designs cannot lower an activity listed in these documents
from REQUIRED to PREFERRED. However, contract, requirement, or reference design may

make an activity “AS REQUIRED” or NOT APPLICABLE”.

3 National Institute for Standards and Technology (NIST), “Secure Software Development Framework (SSDF) Version 1.1: Recommendations for
Mitigating the Risk of Software Vulnerabilities”, February, 2022, https://csrc.nist.gov/publications/detail/sp/800-218/final

6

NIST Special Publication 800-218: Secure Software Development Framework (SSDF),
Version 1.1 has been integrated through the phases enumerated in this guidebook. The
phases that follow Release and Delivery are also covered by different NIST standards, such
as SP 800-534. This guidebook has applied the parenthetical notation used by the SSDF:

• Prepare the Organization (PO)
• Protect the Software (PS)
• Produce Well-Secured Software (PW)
• Respond to Vulnerability (RV)

Each Activity or Tool row has been notated with applicable secure software development
practices.

As noted in NIST SP 800-2185: Organizations should adopt a risk-based approach to
determine what practices are relevant, appropriate, and effective to mitigate the threats to
their software development practices. The additional rows incorporated in the tables are one
possible application of SP 800-218. Each software factory should interpret these as a starting
point, not a destination. SP 800-218 is an outcome-based framework, and so there is no
singular way of interpreting and applying the guidance found in this important framework!

4 National Institute for Standards and Technology (NIST), “Security and Privacy Controls for Information Systems and Organizations”, December
10, 2020, https://csrc.nist.gov/publications/detail/sp/800-53/rev-5/final
5 National Institute for Standards and Technology (NIST), “Secure Software Development Framework (SSDF) Version 1.1: Recommendations for
Mitigating the Risk of Software Vulnerabilities”, February, 2022, https://csrc.nist.gov/publications/detail/sp/800-218/final

7

3.1 Continuous Activities Cross-References
While there are many activities that are localized to a single phase, there are other activities that occur repeatedly over multiple
phases of the DevSecOps lifecycle for Security, Testing, and Configuration Management. These tables aggregate those continuous
activities.

3.1.1 Security Activities Cross-References

Security is integrated into the core of the DevSecOps phases, woven into the fabric that touches each phase depicted in Figure 1.
This approach to security facilitates automated risk characterization, monitoring, and risk mitigation across the application lifecycle.
The Security Activities section, represented here as Table 1, of the Continuous Activities tab summarizes this security posture by
representing all the security activities, the linked DevSecOps phase, and the activities and tools references.

The operations (“Ops”) segment of DevSecOps means that Security Information and Event Management (SIEM) and Security
Orchestration, Automation, and Response (SOAR) capabilities are baked-in throughout each of the ten DevSecOps Software
Development Life Cycle (SDLC) phases. Integration with these capabilities must be considered at every phase in order to properly
practice DevSecOps. This requirement substantially differentiates DevSecOps from legacy software development approaches, where
integration was done “after the fact” using a “bolt-on” mentality.

Table 1: Continuous Security Activities

Security Activities Phase Cyber Tool Dependencies

Mission Based Cyber Risk Assessments All Phases Mission Cyber Risk Assessment tool
Threat modeling Plan Threat modeling tool
Code commit scan Develop Source code repository security plugin
Security code development Develop IDE
Static code scan before commit Develop IDE security plugins
Dependency vulnerability checking Build Dependency checking / BOM checking tool
Static application security test and scan (SAST) Build, Test SAST tool
Database security test Test Security compliance tool
Dynamic application security test and scan (DAST) Test DAST tool or IAST tool
Interactive Application Security Tests (IAST) Test DAST tool or IAST tool

8

Manual security testing (such as penetration test) Test
Various tools and scripts (may include network security test
tool)

Service security test Test Security compliance tool
Post-deployment security scan Deploy Security compliance tool
Compliance Monitoring (resources & services) Monitor Compliance tool; Operational dashboard
Compliance Monitoring (COTS) Monitor Compliance tool; Operational dashboard
Database monitoring and security auditing Monitor Security compliance tool
Runtime Application Security Protection (RASP) Monitor Security compliance tool
System Security monitoring Monitor Information Security Continuous Monitoring (ISCM)
SBOM Software Composition Analysis Post-Build SBOM & Software Factory Risk Continuous Monitoring tool
Software Factory Risk Continuous Monitoring Post-Build SBOM & Software Factory Risk Continuous Monitoring tool
API Security Tests Build API Security Test tool
Cooperative & Adversarial Tests Operate Cooperative & Adversarial Test tool
Persistent Cyber Operations Tests Operate Persistent Cyber Operations test tool
Chaos engineering Operate Chaos engineering tool

3.1.2 Test Activities and Tools Cross-References

Testing is integrated into the core of all DevSecOps phases. And like Security, testing is woven into the fabric that touches each
phase depicted in Figure 1. This approach to testing facilitates automated evaluation of functional and operational performance
across the application lifecycle. The Testing Activities section of the Continuous Activities tab, represented here as Table 2,
summarizes this testing focus by representing all the testing activities, the linked DevSecOps phase, and the activities and tools
references.

Expanding on DODI 5000.89, Test and Evaluation6, the DOT&E Software Developmental Test and Evaluation in DevSecOps
Guidebook7 emphasizes that “T&E strategy, planning, execution and analysis must adapt to support the rapid iterative framework of
DevSecOps regardless of acquisition pathway.”

6 Office of the Under Secretary of Defense for Research and Engineering & Office of the Director, Operational Test and Evaluation. DODI 5000.89,
Test and Evaluation, https://www.esd.whs.mil/Portals/54/Documents/DD/issuances/dodi/500089p.PDF, November 19, 2020
7 Office of the Under Secretary of Defense for Research and Engineering, Software Developmental Test and Evaluation in DevSecOps
Guidebook, https://www.cto.mil/wp-content/uploads/2025/01/Software_DTE_DEVSECOPS_GB_Jan2025_Signed.pdf, January 2025

https://www.esd.whs.mil/Portals/54/Documents/DD/issuances/dodi/500089p.PDF
https://www.cto.mil/wp-content/uploads/2025/01/Software_DTE_DEVSECOPS_GB_Jan2025_Signed.pdf

9

Additional guidance is provided in the Joint Interoperability Test Center (JITC) Guidebook for DevSecOps.8

Table 2: Continuous Test Activities

Test Activities Phase Test Tool Dependencies

Test Audit All Phases Test management tool
Test Deployment Plan, Develop Configuration automation tool; IaC
Test Plan Plan Test tool suite, Work management system
Unit Test Develop Test tool suite; Test coverage tool
Component Test Develop Static analysis tool
Dynamic Analysis Develop Dynamic analysis tool
Service Component Test Develop Service functional test tool
Database Component Test Develop Database test tools
Regression Test (includes smoke tests) Build, Test Test tool suite

Software Integration Test Build
Test report about whether the integrated units
performed as designed.

System Test Build Test result about if the system performs as designed.
Functional Test Test Functional test tool
Integration Test Test Includes both System & Sub-System
Mission-Oriented Developmental Tests Test Test tool suite
Performance Test Test Test tool suite; Test data generator
Acceptance Test Test Test tool suite; Non-security compliance scan

Compliance Scan Test/Deliver
Non-security compliance scan; Software license
compliance checker; Security compliance tool

Development Tests Release Development testing tool
User Story Review and Demonstration Release Work management system

8 Joint Interoperability Test Center, JITC Guidebook for DevSecOps,
https://jitc.fhu.disa.mil/organization/references/publications/downloads/JITC_Guidebook_for_DevSecOps_v1.0_August_2021.pdf, 06 August 2021

https://jitc.fhu.disa.mil/organization/references/publications/downloads/JITC_Guidebook_for_DevSecOps_v1.0_August_2021.pdf

10

Operations Team Acceptance Deliver n/a
Configuration Integration Testing Deliver Configuration integration test tool
Operations Tests Deliver Operations testing tool
Post-deployment checkout Deploy Test scripts
Operational Test and Evaluation Deploy Operational Test and Evaluation tool
User Evaluation / Feedback Post Deploy n/a
Sustainment and Chaos Testing Operate Sustainment and Chaos Testing tool
Test Configuration Audit Monitor Track test and security scan results

3.1.3 Configuration Management Full Lifecycle Activities

Configuration management (CM) plays a key role in DevSecOps practices. Without configuration management discipline,
DevSecOps practices will not reach their full potential. CM ensures the configuration of a software system’s infrastructure, software
components, and functionalities are known initially and well-controlled and understood throughout the entirety of the DevSecOps
lifecycle.

CM consists of three sets of activities:

• Configuration Identification: Identify the configuration items. This can be done manually or with assistance from a discovery
tool. The configuration items include infrastructure components, COTS or open source software components used in the
system, documented software design, features, software code or scripts, artifacts, libraries, etc.

• Configuration Control: Control the changes of the configuration items. Each configuration item has its own attributes, such as
model number, version, configuration setup, license, etc. The Configuration Management Database (CMDB), source code
repository, and artifact repository are tools to track and control the changes. The source code repository is used primarily
during development. The CMDB and artifact repository are used in both development and operations.

• Configuration Verification and Audit: Verify and audit that the configuration items meet the documented requirements and
design. Configuration verification and audit are control gates along a pipeline to control the go/no-go decision to the next
phase.

These configuration management activities are included in the phase-specific activity tables, but also consolidated in the
Configuration Management section of the Continuous Activities tab, represented here as Table 3.

11

Table 3: Continuous Configuration Management Activities

Configuration Management Activities Phase Tool Dependencies

Configuration management planning Plan Team collaboration system; Issue tracking system
Configuration identification Plan CMDB; Source code repository; Artifact repository; Team

collaboration system
Design review Plan Team collaboration system
Documentation version control Plan Team collaboration system
Code commit Develop Source code repository
Code review Develop Code quality review tool
Store artifacts Build Artifact repository
Build configuration control and audit Build Team collaboration system; Issue tracking system; CI/CD

orchestrator
Test Audit Test Test management tool
Test configuration control Test Team collaboration system; Issue tracking system; CI/CD

orchestrator
Infrastructure provisioning automation Deploy Configuration automation tool; IaC
Asset inventory to include SBOMs Monitor Inventory Management
System performance monitoring Monitor Operation monitoring; Issue tracking system; Alerting and

notification; Operations dashboard

System configuration monitoring Monitor ISCM; Issue tracking system; Alerting and notification;
Operations dashboard

3.2 Plan Phase Activities
Software development planning activities include configuration management planning, change management planning, project
management planning, system design, software design, test planning, and security planning. Planning tools support software
development activities. Some tools will be used throughout the software lifecycle, such as a team collaboration tool, an issue
tracking system, and a project management system. Some tools are shared at the enterprise level across programs. Policy and
enforcement strategy should be established for access controls on various tools.

The activities supported by the plan phase are listed in the Plan tab of the Activities & Tools Guidebook spreadsheet, represented
here as Table 4. Some activities are suitable at enterprise or program level, such as DevSecOps ecosystem design, project team

12

onboarding planning, and change management planning. Others fit at the project level and are considered continuous in the
DevSecOps lifecycle.

Table 4: Plan Phase Activities

Activities Baseline SSDF Description Inputs Outputs Tool
Dependencies

Security /
Testing / CM

Change
management
planning

REQUIRED PO.1.1,
PS.1.1,
PS.3.1,
PW.6.1

Plan the change
control process

Organizational
policy;
Software
development best
practices

Change control
procedures;
Review procedures;
Control review
board;
Change
management plan

Team
collaboration
system;
Issue tracking
system

Configuration
identification

REQUIRED PO.2.1,
PS.1.1,
PW.2.1,
PW.4.1,
PW.4.2,
PW.6.2

Discover or
manual input
configuration
items into CMDB;
Establish system
baselines

IT infrastructure
asset;
Software system
components (include
DevSecOps tools);
code baselines;
document baselines

Configuration items CMDB;
Source code
repository;
Artifact repository;
Team
collaboration
system

Configuration
Management

Configuration
management
(CM) planning

REQUIRED PO.3.1,
PO.3.3,
PO.4.1,
PO.4.2,
PW.2.1

Plan the
configuration
control process;
Identify
configurations
items

Software
development,
security and
operations best
practice;
IT infrastructure
asset;
Software system
components

CM processes and
plan;
CM tool selection;
Responsible
configuration items;
Tagging strategy

Team
collaboration
system;
Issue tracking
system

Configuration
Management

Database design PREFERRED PO.1.2,
PO.3.1,
PO.5.2,
PW.1.1,
PW.5.1

Data modeling;
Database
selection;
Database
deployment
topology

System requirement;
System design

- Database design
document
-

Data modeling
tool;
Teams
collaboration
system

13

Design review PREFERRED PO.1.2,
PW.1.2,
PW.2.1,
PW.8.2,
RV.2.2

Review and
approve plans
and documents

Plans and design
documents;

Review comments;
Action items

Team
collaboration
system

Configuration
Management

DevSecOps
process design

REQUIRED PO.1.1 Design the
DevSecOps
process
workflows that
are specific to
this project

Change
management
process;
System design;
Release plan &
schedule

DevSecOps process
flow chart;
DevSecOps
ecosystem tool
selection;
Deployment platform
selection

Team
collaboration
system

Documentation
version control

REQUIRED PO.1.1,
PO.1.2,
PO.1.3,
PS.1.1

Track design
changes

Plans and design
documents;

Version controlled
documents

Team
collaboration
system

Configuration
Management

IaC deployment REQUIRED PO.3.2,
PO.3.3

Deploy
infrastructure and
set up
environment
using
Infrastructure as
Code

Artifacts
(Infrastructure as
Code)
Infrastructure as
Code

The environment
ready

Configuration
automation tool;
IaC

Mission-Based
Cyber Risk
Assessments

REQUIRED PW.7.2,
RV.1.1,
RV.1.2,
RV.2.1,
RV.3.1,
RV.3.2,
RV.3.3,

An assessment
of risks based
upon the stated
mission of the
system or
platform

NIST 800-53 RMF
Control
Implementations
FIPS 199 system
categorization
Information types

Risk assessment Risk assessment
tool

Security

Project/Release
planning

REQUIRED PS.3.1,
PS.3.2

Project task
management
Release planning

Project charter
Project constraints

Project Plan
Task plan &
schedule
Release plan &
schedule

Team
collaboration
system;
Project
management
system

14

Project team
onboarding
planning

REQUIRED PO.2.1,
PO.2.2,
PO.2.3

Plan the project
team onboarding
process,
interface, access
control policy

Organization policy Onboarding plan Team
collaboration
system

Risk management REQUIRED PO.1.2,
PO.3.1,
PO.4.1,
PW.1.1,
PW.1.2,
PW.2.1,
RV.2.1

Risk assessment System architecture;
Supply chain
information;
Security risks

Risk management
plan

Team
collaboration
system;

Software
requirement
analysis

REQUIRED PO.1.1,
PO.1.2,
PO.1.3

Gather the
requirements
from all
stakeholders

Stakeholder inputs
or feedback;
Operation
monitoring
feedback;
Test feedback

Requirements
Documents:
- Feature
requirements
- Performance
requirements
- Privacy
requirements
- Security
requirments

Requirements
tool;
Team
collaboration
system;
Issue Tracking
system

System design REQUIRED PO.1.1,
PO.1.2,
PO.1.3

Design the
system based on
the requirements

Requirements
database or
documents

System Design
Documents:
- System
architecture
- Functional design
- Data flow diagrams
- Acceptance
Criteria
- Infrastructure
configuration plan
- Tool selections
- Ecosystem Tools:
- Development tool
- Test Tool
- Deployment
platform

Team
collaboration
system;
Issue tracking
system;
Software system
design tools

15

Test Audit REQUIRED PO.2.1,
PS 2.1,
PW.1.2,
PW.2.1

Test audit keeps
who performs
what test at what
time and test
results in records

Test activity and test
results

Test audit log Test management
tool

Testing

Test Deployment REQUIRED PW.1.3 Deploy test
infrastructure

Test environment
applications and
infrastructure

Test environment
instrumentation

Testing tool, Team
collaboration
system

Testing

Test Plan REQUIRED PO.1.1,
PO.1.2,
PO.1.3,
PW.8.1,
PW.8.2

Plan testing,
including
validating
Acceptance
Criteria,
specifying
Component
Tests,
Component
integration Tests,
and Software
Integration Tests

Requirements
database or
documents, system
design

Test plans Testing tool, Team
collaboration
system

Testing

Threat modeling PREFERRED PW.1.1,
PW.2.1,
RV.2.1

Identify potential
threats,
weaknesses and
vulnerabilities.
Define the
mitigation plan

System design Potential threats and
mitigation plan

Threat modeling
tool

Security

3.3 Develop Phase Activities
Develop phase activities, listed on the Develop tab and represented here as Table 5, mainly convert requirements into source code
and are supported by a variety of tools. The source code includes application code, test scripts, Infrastructure as Code, Security as
Code, DevSecOps workflow scripts, etc. The development team may rely on a single modern integrated development environment
(IDE) for multiple programming language support. The IDE code assistance feature aids developers with code completion, semantic
coloring, and library management to improve coding speed and quality. The integrated compiler, interpreter, lint tools, and static code
analysis plugins can catch code mistakes and suggest fixes before developers check code into the source code repository. Source
code peer review or pair programming are other ways to ensure code quality control. All the code generated during development

16

must be committed to the source code repository and thus version controlled. Committed code that breaks the build should be
checked in on a branch and not merged into the trunk until it is fixed.

Although not considered an explicit tool or activity, it is important that DevSecOps teams establish a firm strategy to design and
create composable software artifacts that contain new or updated capabilities released through a Continuous Integration/Continuous
Deployment (CI/CD) pipeline. Only through application decomposition into a discrete set of manageable services is it possible to
properly avoid high-risk monolithic development practices.

Table 5: Develop Phase Activities

Activities Baseline SSDF Description Inputs Outputs Tool
Dependencies

Security /
Testing / CM

Application code
development

PREFERRED PO.1.2,
PO.3.1

Application coding Developer coding
and appropriate
unit, integration,
etc. testing input

Source code &
test results

IDE

Code commit REQUIRED PS.1.1,
PW.4.4

Commit source code
into version control
system

Source code Version
controlled source
code

Source code
repository

Configuration
Management

Code Commit Logging REQUIRED PO.3.1,
PO.3.3,
PO.5.1,
PO.5.2

Logging of successful
code commits, or
analysis of rejected
commits, which will
have benefits to
security and insider
threat protections

- Review
Comments
- Source Code
Weakness Findings
- Version-
Controlled Source
Code
- Security Findings
and Warnings

Code Commit
Log

Logging tool

Code commit scan REQUIRED RV.1.2 Check the changes for
sensitive information
before pushing the
changes to the main
repository.
If it finds suspicious
content, it notifies the
developer and blocks
the commit.

Locally committed
source code

Security findings
and warnings

Source code
repository
security plugin

Security

17

Code review PREFERRED PW.7.1,
PW.7.2

Perform code review
to all source code.
Note that pair
programming counts.

Source code Review
comments

Code quality
review tool

Configuration
Management

Component Test PREFERRED RV.8.1,
RV.8.2

Closed-box testing,
evaluating the
behavior of the
program without
considering the details
of the underlying code

Test plan
Test cases
Test data

Test results Test tool suite,
Test coverage
tool

Testing

Database Component
Test

REQUIRED RV.8.1,
RV.8.2

Closed-box database
testing, evaluating the
behavior of the
database without
considering the details
of the underlying code

Test plan
Test cases
Test data

Test results Test tool suite,
Test coverage
tool

Testing

Database development PREFERRED PO.3.1 Implement the data
model using data
definition language or
data structure
supported by the
database;
Implement triggers,
views or applicable
scripts;
Implement test scripts,
test data generation
scripts.

Data model Database
artifacts
(including data
definition,
triggers, view
definitions, test
data, test data
generation
scripts, test
scripts, etc.)

IDE or tools
come with the
database
software

Database functional
test (optional)

PREFERRED PW.8.1,
PW.8.2

Perform unit test and
functional test to
database to verify the
data definition,
triggers, constrains
are implemented as
expected

- Test data;
- Test Scenarios

Test results Database test
tools

Testing

18

Documentation REQUIRED PO.1.1,
PO.1.2,
PO.1.3,
PW.7.2

Detailed
implementation
documentation

- User input;
- Developed
Source Code

- Documentation;
- Auto generated
Application
Programming
Interface (API)
documentation

IDE or
document
editor or build
tool

Dynamic analysis PREFERRED RV.1.2,
RV.2.1,
RV.3.1,
RV.3.2,
RV.3.3

Dynamic code
analysis involves
running code and
examining the
outcome.

Source code, fuzz
data

Various
outcomes
depending on the
code execution

Dynamic code
analysis tool

Testing

Functional test REQUIRED PW.8.1,
PW.8.2

Functional tests
determine if code is
acting in accordance
with the pre-
determined
requirements.

- Test data;
- Test Scenarios

Text results Functional
testing tool

Testing

Infrastructure code
development

PREFERRED PO.5.1,
PW.8.2,
PW.9.1

System components
and infrastructure
orchestration coding
Individual component
configuration script
coding. Includes
Database deploy and
high availability
configuration

Developer coding
and appropriate
unit, integration,
etc. testing input

Source code &
test results

IDE

Mission Based Cyber
Risk Assessments

REQUIRED PW.7.2,
RV.1.1,
RV.1.2,
RV.2.1,
RV.3.1,
RV.3.2,
RV.3.3,

An assessment of
risks based upon the
stated mission of the
system or platform

NIST 800-53 RMF
Control
Implementations
FIPS 199 system
categorization
Information types
CNSSI 1253

Risk assessment Risk
assessment
tool

Security

19

Security code
development

REQUIRED PO.1.2,
PW.5.1,
PW.6.1,
PW.6.2

Security policy
enforcement script
coding

Developer coding
and appropriate
unit, integration,
etc. testing input

Source code &
test results

IDE Security

Service functional test PREFERRED PW.8.1,
PW.8.2

Perform unit test and
functional test to
services

- Test data;
- Test Scenarios

Test results Service testing
tool

Testing

Static analysis REQUIRED RV.1.2,
RV.2.1,
RV.3.1,
RV.3.2,
RV.3.3

Static code analysis
examines code to
identify issues within
the logic and
techniques.

Source code Static code
analysis report

Static code
analysis tool

Testing

Static code scan before
commit

REQUIRED PW.7.1,
PW.7.2

Scan and analyze the
code as the developer
writes it. Notify
developers of potential
code weakness and
suggest remediation.

Source code;
known weaknesses

source code
weakness
findings

IDE security
plugins

Security

Test Audit REQUIRED PO.2.1,
PS 2.1,
PW.1.2,
PW.2.1

Test audit keeps who
performs what test at
what time and test
results in records

Test activity and
test results

Test audit log Test
management
tool

Testing

Test development REQUIRED PW.9.1,
PW.8.2

Develop detailed test
procedures, test data,
test scripts, test
scenario configuration
on the specific test
tool

Test plan Test procedure
document;
Test data file;
Test scripts

IDE;
Specific test
tool

Testing

Unit test REQUIRED PW.8.1,
PW.8.2

Assist unit test script
development and unit
test execution. It is
typically language
specific. Whenever
possible, the unit test
should be automated.

Unit test script,
individual software
unit under test (a
function, method or
an interface), test
input data, and
expected output
data

Test report to
determine
whether the
individual
software unit
performs as
designed.

Test tool suite,
Test coverage
tool

Testing

20

3.4 Build Phase Activities
Activities in the Build phase, listed in the Build tab and represented here as Table 6, perform the tasks of building and packaging
applications, services, and microservices into artifacts. For statically linked languages like C++, building starts with compiling and
linking. The former is the act of turning source code into object code and the latter is the act of combining object code with libraries to
create an executable file. For "late binding” languages, such as Java Virtual Machine (JVM) based languages, building starts with
compiling to class files, then building a compressed file such as a jar, war, or ear file, which includes some metadata, and may
include other files such as icon images. For dynamically interpreted languages, such as Python or JavaScript, there is no need to
compile, but lint tools help to check for some potential errors such as syntax errors. Building should also include generating
documentation, such as Javadoc, copying files like libraries or icons to appropriate locations, and creating a distributable file such as
a tar or zip file. The build script should also include targets for running automated unit tests.

Modern build tools can also be integrated into both an IDE and a source code repository to enable building both during development
and after committing. For those applications that use containers, the build stage also includes a containerization tool. In all cases,
code quality tools that scan for well-known issues are highly recommended.

Table 6: Build Phase Activities

Activities Baseline SSDF Description Inputs Outputs Tool
Dependencies

Security /
Testing /
CM

API Security Tests REQUIRED PO.3.2,
PO.4.1,
PW.1.3,
PW.4.4,
RV1.2

Closed-box test,
evaluating the
Application
Programming
Interfaces' compliance
with security
requirements

Executable system /
application
Test Plan
Test Cases
Test data

Test results Test tool suite Security

Build REQUIRED PO.3.1,
PO.3.2,
PO.3.3,
PO.4.1

Compile and link Source code;
dependencies

Binary artifacts
Build Report

Build tool;
Lint tool;
Artifact
repository

21

Build configuration
control and audit

REQUIRED PS 3.2 Track build results,
SAST and dependency
checking report;

Build results;
SAST report;
Dependency
checking report

Version controlled
build report;
Action items;
Go/no-go decision

Team
collaboration
system;
Issue tracking
system;
CI/CD
orchestrator

Configurati
on
Manageme
nt

Component Test REQUIRED RV.8.1,
RV.8.2

Closed-box testing,
evaluating the behavior
of the program without
considering the details
of the underlying code

Test plan
Test cases
Test data

Test results Test tool suite,
Test coverage
tool

Testing

Dependency
vulnerability
checking

REQUIRED PO.3.1,
PO.3.2,
PW.4.4,
RV.1.1,
RV.1.2,
RV.1.3

Identify vulnerabilities
in the open source
dependent
components

Dependency list or
BOM list

Vulnerability report Dependency
checking / BOM
checking tool

Security

Functional test REQUIRED PW.8.1,
PW.8.2

Functional tests
determine if code is
acting in accordance
with the pre-
determined
requirements.

Test plan;
Requirement
documents and/or
database;
Acceptance criteria

Functional test
scripts, the
software units
under test, test
input, and expected
output data

Test report
documenting the
performance of
the integrated
unit.

Testing

Integration test REQUIRED PW.8.1,
PW.8.2

Develops the
integration test scripts
and execute the scripts
to test one or more
software units as a
group with the
interaction between the
units as the focus.

Test plan;
Requirement
documents and/or
database;
Acceptance criteria;
APIs for integrated
systems

Integration test
scripts, the
software units
under test, test
input data, and
expected output
data

Test results
documenting the
functioning of
the system.

Testing

22

Mission Based
Cyber Risk
Assessments

REQUIRED PW.7.2,
RV.1.1,
RV.1.2,
RV.2.1,
RV.3.1,
RV.3.2,
RV.3.3,

An assessment of risks
based upon the stated
mission of the system
or platform

NIST 800-53 RMF
Control
Implementations
FIPS 199 system
categorization
Information types
CNSSI 1253

Risk assessment Risk
assessment tool

Security

Regression Test
(includes smoke
tests)

REQUIRED RV.8.1,
RV.8.2

Regression testing is
re-running functional
and non-functional
tests to ensure that
previously developed
and tested software
still performs as
expected after a
change.

Test plan,
Test cases,
Test data

Test results Test
management
tool

Testing

Release
packaging

REQUIRED PS.2.1,
PS.3.1,
PS.3.2

Package binary
artifacts, VM images,
infrastructure
configuration scripts,
proper test scripts,
documentation,
checksum, digital
signatures, and
release notes as a
package.

Binary artifacts;
Scripts;
Documentation;
Release notes

Released package
with checksum and
digital signature

Release
packaging tool

Software
Integration Test

REQUIRED RV.8.1,
RV.8.2

Tests
where individual softwa
re modules are
combined and tested
as a group

Test plan,
Test cases,
Test data

Test results Test
management
tool

Testing

Static application
security test and
scan

REQUIRED PO.3.1,
PO.3.2,
PO.3.3,
PO.4.1,
PO.4.2

Perform SAST to the
software system

Source code; known
vulnerabilities and
weaknesses

Static code scan
report and
recommended
mitigation.

SAST tool Security

23

Store artifacts REQUIRED PO.3.1,
PO.3.3

Store artifacts to the
artifact repository

Binary artifacts;
Database artifacts;
Scripts;
Documentation

Versioned
controlled artifacts

Artifact
Repository

Configurati
on
Manageme
nt

System test PREFERRED PW.8.1,
PW.8.2

System test uses a set
of tools to test the
complete software
system and its
interaction with users
or other external
systems. Includes
interoperability test,
which demonstrates
the system's capability
to exchange mission
critical information and
services with other
systems.

Test plan;
Requirement
documents and/or
database;
Acceptance criteria

System test scripts,
the software
system and
external
dependencies, test
input data and
expected output
data

Test results
documenting the
performance of
the system.

Testing

Test Audit REQUIRED PO.2.1,
PS 2.1,
PW.1.2,
PW.2.1

Test audit keeps who
performs what test at
what time and test
results in records

Test activity and test
results

Test audit log Test
management
tool

Testing

3.5 Test Phase Activities
Like security, testing is something that should be integrated in all the DevSecOps phases. With maturity, testing should become
more and more automated. The Test Activities section of the Continuous Activities tab of the Activities and Tools Guidebook
spreadsheet summarizes the list of testing activities and identifies the Phase in which that activity is done.

The discipline of testing changes within the automated processes of DevSecOps. Testing focuses on how the system supports the
mission. One implication of this evolution is that re-skilling of the test team is needed; the old skill set of "sit at a screen and use the
app as you were trained for 3 days to use it" is no longer applicable. Rather, testing is about understanding the intent of the mission
and how to test that using automation. The testers will need to become coders of that automation and be involved from the beginning
of the DevSecOps process.

24

Test tools support continuous testing across the software development lifecycle. Test activities may include, but are not limited to,
unit test, functional test, integration test, system test, regression test, acceptance test, performance test, and variety of security tests.
All tests start with test planning and test development, which includes detailed test procedures, test scenarios, test scripts, and test
data. Automated testing can be executed by running a set of test scripts or running a set of test scenarios on the specific test tool
without human intervention. If full automation is not possible, the highest percentage of automation is desired. It is highly
recommended to leverage emulation and simulation to test proper integration between components such as microservices and
various sensors/systems so integration testing can be automated as much as possible. Automation will help achieve high test
coverage and make continuous ATO practicable, as well as significantly increase the quality of delivered software.

These activities happen at different test stages:

• Development stage: unit test, SAST discussed in the build phase.

• System test stage: DAST or IAST, integration test, system test.

• Pre-production stage: manual security test, performance test, regression test, acceptance test, container policy enforcement,
and compliance scan.

• Production stage: operational test and evaluation with mission users.

Test audit happens at all stages.

Table 7: Test Phase Activities

Activities Baseline SSDF Description Inputs Outputs Tool
Dependencies

Security /
Testing / CM

API Security Tests REQUIRED PO.3.2,
PO.4.1,
PW.1.3,
PW.4.4,
RV1.2

Closed-box test,
evaluating the
Application
Programming
Interfaces'
compliance with
security
requirements

Executable
system/applicati
on
Test Plan
Test Cases
Test data

Test results Test tool suite Security

25

Compliance scan REQUIRED RV.1.2 Compliance audit Artifacts;
Software
instances;
System
components

Compliance
reports

Non-security
compliance scan;
Software license
compliance
checker;
Security
compliance tool

Testing

Database security
test

PREFERRED PW.8.1,
PW.8.2,
PW.9.2

Perform security
scan;
Security test

Test data;
Test scenarios

Test results Vulnerability
findings;
Recommended
mitigation actions

Security

Dynamic
application
security test
(DAST) and scan

PREFERRED RV.1.2,
RV.2.1,
RV.3.1,
RV.3.2,
RV.3.3

Perform DAST or
IAST testing to the
software system

Running
application and
underlying OS;
Fuzz inputs

Vulnerability,
static code
weakness and/or
dynamic code
weakness report
and
recommended
mitigation

DAST tool or IAST
tool

Security

Interactive
Application
Security Tests
(IAST)

PREFERRED PO.4.1,
PO.4.2,
PS.2.1,
PW.1.1,
PW.5.1,
PW.8.1,
PW.8.2

IAST (interactive
application security
testing) analyzes
code for security
vulnerabilities while
the app is run by an
automated test,
human tester, or any
activity “interacting”
with the application
functionality.

Software
instances,
Test scenarios,
Test data

Test results IAST tool Security

Manual security
test

REQUIRED PO.4.1,
PO.4.2,
PS.2.1,
PW.1.1,
PW.5.1,
PW.8.1,
PW.8.2

Such as penetration
test, which uses a
set of tools and
procedures to
evaluate the security
of the system by
injecting authorized
simulated cyber-
attacks to the
system.

Running
application,
underlying OS,
and hosting
environment

Vulnerability
report and
recommended
mitigation

Various tools and
scripts (may
include network
security test tool)

Security

26

CI/CD orchestrator
does not automate
the test, but the test
results can be a
control point in the
pipeline.

Mission Based
Cyber Risk
Assessments

REQUIRED PW.7.2,
RV.1.1,
RV.1.2,
RV.2.1,
RV.3.1,
RV.3.2,
RV.3.3,

An assessment of
risks based upon the
stated mission of the
system or platform

NIST 800-53
RMF Control
Implementations
FIPS 199
system
categorization
Information
types
CNSSI 1253

Risk assessment Risk assessment
tool

Security

Performance test PREFERRED PO.3.1,
PO.3.2,
PO.3.3

Ensure applications
will perform well
under the expected
workload. The test
focus is on
application response
time, reliability,
resource usage and
scalability.

Test case, test
data, and the
software system

Performance
metrics

Test tool suite,
Test data
generator

Testing

Regression test REQUIRED PW.4.4,
PW.7.2

A type of software
testing to confirm
that a recent
program or code
change has not
adversely affected
existing features.

Functional and
non-functional
regression test
cases;
The software
system

Test report Test tool suite Testing

SBOM Software
Composition
Analysis

REQUIRED PS.3.2 Collect and analyze
provenance data for
all components of
each release

Software Bill of
Materials
Vulnerabilities

Analysis report SBOM Analysis
tool

Security

27

Service security
test

REQUIRED PO.3.1,
PO.3.2

Perform security
scan;
Security test

Test data;
Test scenarios

Test results Vulnerability
findings;
Recommended
mitigation actions

Security

Software Factory
Risk Continuous
Monitoring

REQUIRED PS.3.2 Monitor Software
Factory controls

Software
Factory controls

Alerts Monitoring tool
suite

Security

Software
Integration Test

REQUIRED RV.8.1,
RV.8.2

Testing where
software modules
are integrated
logically and tested
as a group

Test data;
Test scenarios

Test results Test management
tool

Testing

Static application
security test
(SAST) and scan

REQUIRED RV.1.2,
RV.2.1,
RV.3.1,
RV.3.2,
RV.3.3

Perform Static
Application Security
Tests (SAST) on the
software system.

Source code,
known
vulnerabilities
and weaknesses

Static code scan
report and
recommended
mitigation

SAST tool Security

Suitability test PREFERRED n/a Accessibility and
usability test
Failover and
recovery test
performance, stress
and volume test
security and
penetration test
interoperability test
compatibility test
supportability and
maintainability

The tested
system
Supporting
system
Test data

Test report Test tool suite,
Non-security
compliance scan

Testing

System Test REQUIRED RV.8.1,
RV.8.2

Test where the
entire system is
tested as a whole

Test data;
Test scenarios

Test results Test management
tool

Testing

Test Audit REQUIRED PO.2.1,
PS.2.1,
PW.1.2,
PW.2.1

Test audit keeps
who performs what
test at what time and
test results in
records

Test activity and
test results

Test audit log Test management
tool

Testing

28

3.6 Release Phase Activities
In the release phase, the activities for which are included in the Release tab and represented here as Table 8, the software artifacts
are digitally signed to verify that they have passed build, all tests, and security scans. Then, they are delivered to the artifact
repository. The content of the artifacts depends on the application. It may include, but is not limited to, container images, VM images,
binary executables (such as jar, war, and ear files), test results, security scan results, and Infrastructure as Code deployment scripts.
Artifacts will be tagged with the release tag if a GO release decision is made based on the configuration audit results. The artifacts
with the release tag are delivered to production.

The mission program could have more than one artifact repository, though more than likely there is a centralized repo where
separate artifact types are appropriately tagged. One artifact repository (or set of tags) is used in the build stage to store build results.
The test deployment activity can fetch the artifacts from the build stage artifact repository to deploy the application into various
environments (development, test, or pre-production). Another artifact repository (or set of tags) may be used to stage the final
production deliverables. The production deployment will get all the artifacts from the production artifact repository to deploy the
application.

Some mission program application systems have geographically distributed operational regions across the country or even overseas.
In order to increase deployment velocity, a remote operational region may have its own local artifact repository that replicates the
artifact repository completely or partially. During release, a new artifact is pushed into the artifact repository and then replicated to
other regional artifact repositories.

Table 8: Release Phase Activities

Activities Baseline SSDF Description Inputs Outputs Tool Dependency Security /
Testing / CM

Artifacts replication PREFERRED PS.2.1,
PS.3.1,
PS.3.2,
PW.4.1,
PW.4.2

Replicate newly
released artifacts to all
regional artifact
repositories

Artifacts Artifacts in all
regional artifact
repositories

Artifacts
repositories
(release, regional)

29

Developmental
Cyber Tests

PREFERRED
PO.4.1,
PO.4.2,
PS.2.1,
PW.2.1,
PW.8.1,
PW.8.2,
RV.3.2,
RV.3.4

Testing the system in
development and
operational
environments

Known CVEs,
privacy
requirements,
security
requirements,
and potential
threats

Recommendati
ons

 Testing

Mission Based
Cyber Risk
Assessments

REQUIRED PW.7.2,
RV.1.1,
RV.1.2,
RV.2.1,
RV.3.1,
RV.3.2,
RV.3.3

An assessment of risks
based upon the stated
mission of the system
or platform

NIST 800-53
RMF Control
Implementation
s
FIPS 199
system
categorization
Information
types
CNSSI 1253

Risk
assessment

Risk assessment
tool

Security

Operational
Readiness Test

REQUIRED n/a Suitability and
effectiveness test of
the entire system

The tested
system
Supporting
system
Test data

Test report Test tool suite,
Non-security
compliance scan

Testing

Release go / no-go
decision

REQUIRED PW.2.1,
RV.3.4

Decision on whether to
release artifacts to the
artifact repository for
the production
environment.

Design
documentation;
Version
controlled
artifacts;
Version
controlled test
reports;
Security test
and scan
reports

go / no-go
decision;
Artifacts are
tagged with
release tag if
go decision is
made

CI/CD
Orchestrator

SBOM Software
Composition
Analysis

REQUIRED PS.3.2 Collect and analyze
provenance data for all
components of each
release

Software Bill of
Materials
Vulnerabilities

Analysis report SBOM Analysis
tool

Security

30

Software Factory
Risk Continuous
Monitoring

REQUIRED PS.3.2 Monitor Software
Factory controls

Software
Factory
controls

Alerts Monitoring tool
suite

Security

Test Audit REQUIRED PO.2.1,
PS.2.1,
PW.1.2,
PW.2.1

Test audit keeps who
performs what test at
what time and test
results in records

Test activity
and test results

Test audit log Test management
tool

Testing

User Story Review
and Demonstration

PREFERRED n/a Review of the user
story, including
description and
acceptance criteria,
and a demonstration of
the completed work.

User Story,
artifact
repository, and
test
environment.

Push go/no-go
decision

Artifact repository,
test environment

Testing

3.7 Deliver Phase Activities
In the deliver phase, the activities for which are in the Deliver tab and represented here as Table 9,the software artifacts are received
and verified, ensuring that they have passed build, all tests, and security scans. It may include, but is not limited to, container images,
VM images, binary executables (such as jar, war, and ear files), test results, security scan results, and Infrastructure as Code
deployment scripts. Artifacts will be tagged with the release tag if a GO release decision is made based on the configuration audit
results. The artifacts with the release tag are delivered to production.

The mission program could have more than one artifact repository, though more than likely there is a centralized repo where
separate artifact types are appropriately tagged. One artifact repository (or set of tags) is used in the build stage to store build results.
The test deployment activity can fetch the artifacts from the release stage artifact repository to promote the application into various
environments (development, test, or pre-production). Another artifact repository (or set of tags) may be used to stage the final
production deliverables. The production deployment will get all the artifacts from the production artifact repository to deploy the
application.

Some mission program application systems have geographically distributed operational regions across the country or even overseas.
To increase deployment velocity, a remote operational region may have its own local artifact repository that replicates the
authoritative artifact repository completely or partially. During release, a new artifact is pushed into the artifact repository and then
replicated to other regional artifact repositories.

Once a product is released, Developmental Testing is completed.

31

Table 9: Deliver Phase Activities

Activities Baseline SSDF Description Inputs Outputs Tool Dependency Security /
Testing / CM

Configuration
Integration Testing

REQUIRED PO.4.1,
PO.4.2,
PS.2.1,
PW.2.1,
PW8.1,
PW8.2

Testing the fully
integrated system
to ensure that it
meets
requirements

Accepted Release
Package

Configuration
Results

 Testing

Deliver released
artifacts

REQUIRED PS.2.1,
PS.3.1,
PS.3.2,
PW.4.1,
PW.4.2

Push released
artifacts to the
artifact repository

Release package New release in the
artifact repository

Artifacts repository

Delivery Results
Review

REQUIRED PO.3.3,
RV.3.2,
RV.3.4

Review of the
release package
and all associated
artifacts,
configuration
results, and
recommendations

Configuration
results and
Recommendations

Production
Push go/no-go
decision

Mission Based
Cyber Risk
Assessments

REQUIRED PW.7.2,
RV.1.1,
RV.1.2,
RV.2.1,
RV.3.1,
RV.3.2,
RV.3.3

An assessment of
risks based upon
the stated mission
of the system or
platform

NIST 800-53 RMF
Control
Implementations
FIPS 199 system
categorization
Information types
CNSSI 1253

Risk assessment Risk assessment
tool

Security

32

 Operational
Cyber Tests

PREFERRED PO.4.1,
PO.4.2,
PS.2.1,
PW.2.1,
PW8.1,
PW8.2,
RV.3.2,
RV.3.4

Testing the
system in
operational
environments

Known CVEs,
privacy
requirements,
security
requirements, and
potential threats

Recommendations Testing

Operations Team
Acceptance

REQUIRED PO.4.1,
PO.4.2,
PS.2.1,
PW.2.1,
PW8.1,
PW8.2

Testing on the
delivered artifacts
to ensure that they
meet operational
requirements

Release package;
Test results;
SBOM Software
Composition
Analysis;

Accepted release
package

 Testing

SBOM Software
Composition
Analysis

REQUIRED PS.3.2 Collect and
analyze
provenance data
for all components
of each release

Software Bill of
Materials
Vulnerabilities

Analysis report SBOM Analysis
tool

Security

Software Factory
Risk Continuous
Monitoring

REQUIRED PS.3.2 Monitor Software
Factory controls

Software Factory
controls

Alerts Monitoring tool
suite

Security

Test Audit REQUIRED PO.2.1,
PS 2.1,
PW.1.2,
PW.2.1

Test audit keeps
who performs
what test at what
time and test
results in records

Test activity and
test results

Test audit log Test management
tool

Testing

3.8 Deploy Phase Activities
The dominant deployment options have historically been virtual machines and software containers. However, serverless Cloud
Service Offerings (CSOs) have matured and are rapidly increasing in popularity. The tools used in the Deploy phase are
environment and deployment stage dependent. Deploy phase activities and their related tools are listed in the Deploy tab of the
Activities and Tools Guidebook spreadsheet and represented here in Table 10.

33

Once a product has reached the Deploy phase, Operational Testing begins.

Table 10: Deploy Phase Activities

Activities Baseline SSDF Description Inputs Outputs Tool Dependency Security /
Testing / CM

Artifact
deployment

PREFERRED PO.3.1,
PO.3.2

Artifacts deployment
and data loading

Artifacts in the
repository;
Data

Running
database
system

Artifact repository;
Database
automation tool;
Data masking or
encryption tool if
needed

Artifact download PREFERRED PW.4.1,
PW.4.2

Download newly
release artifacts from
the artifact repository

Artifact download
request

Requested
artifacts

Artifact repository

Compliance Tests REQUIRED PO.3.1,
PO.3.2,
PO.3.3

 Testing to determine
whether a deliverable
complies with the
requirements of a
specification, technical
standard, contract, or
regulation

Artifacts in the
repository;
Test scenarios;
Data

Test results Test management
tool

Testing

Create linked
clone of VM
master image

PREFERRED PW.4.1,
PW.4.2

Instantiate VM by
creating a link clone of
parent VM with master
image

VM parent
New VM instance
parameters

New VM
instance

Virtualization
Manager

Database artifact
deployment

PREFERRED PO.3.1,
PO.3.2

Database artifacts
deployment and data
loading

Artifacts in the
repository;
Data

Running
database
system

Artifact repository;
Database
automation tool;
Data masking or
encryption tool if
needed

Database Schema
installation

PREFERRED PO.3.1,
PO.3.2,
PO.3.3

Database software
schema
deploy/update.

Artifacts in the
repository;
Data

Running
database
system

Artifact repository;
Database
automation tool;
Data masking or
encryption tool if
needed

34

Formal
Qualification Tests

AS
REQUIRED

PO.3.1,
PO.3.2,
PO.3.3

Tests to assess
appropriateness or
qualifications of
deliverables with
contractual
requirements.

Artifacts in the
repository;
Test scenarios;
Data

Test results Test management
tool

Testing

Human Systems
Integration Tests

AS
REQUIRED

PO.3.1,
PO.3.2,
PO.3.3

 Artifacts in the
repository;
Test scenarios;
Data

Test results Test management
tool

Testing

Infrastructure
provisioning
automation

PREFERRED PO.3.1,
PO.3.2,
PO.5.1,
PO.5.2

Infrastructure systems
auto provisioning
(such as software
defined networking,
firewalls, DNS,
auditing and logging
system, user/group
permissions, etc.)

Infrastructure
configuration
scripts / recipes /
manifests /
playbooks

Provisioned and
configured
infrastructure

Configuration
automation tools;
IaC

Configuration
Management

Interoperability
Tests

REQUIRED PO.3.1,
PO.3.2,
PO.3.3

Testing of the
communication and
cooperation between
multiple software and
system capabilities.

Artifacts in the
repository;
Test scenarios;
Data

Test results Test management
tool

Testing

Interoperability
Certifications

AS
REQUIRED

PO.3.1,
PO.3.2,
PO.3.3

Interoperability
Certification,
especially relevant for
flight and weapon
systems

 Testing

Mission Based
Cyber Risk
Assessments

REQUIRED PW.7.2,
RV.1.1,
RV.1.2,
RV.2.1,
RV.3.1,
RV.3.2,
RV.3.3,

An assessment of
risks based upon the
stated mission of the
system or platform

NIST 800-53
RMF Control
Implementations
FIPS 199 system
categorization
Information types
CNSSI 1253

Risk
assessment

Risk assessment
tool

Security

35

Mission-Oriented
Developmental
Tests

REQUIRED PO.3.1,
PO.3.2,
PO.3.3

Tests to evaluate and
validate the
performance of new or
existing systems,
equipment, or
technology in real-
world mission
scenarios. These tests
are conducted to
determine the ability of
the system to meet its
intended objectives
and to identify any
potential issues or
areas for
improvement.

Artifacts in the
repository;
Test scenarios;
Data

Test results Test management
tool

Testing

Operational
Assessments

AS
REQUIRED

PO.3.1,
PO.3.2,
PO.3.3

Evaluation of a
minimal capability
fielding or early
fielding capability in
the unique theater of
employment and/or for
tailored use to support
preliminary evaluation
of operational
effectiveness and
suitability, while taking
into equal
consideration
survivability and
lethality effects

 Assessment
results

 Testing

Operational Test
and Evaluation

AS
REQUIRED

PO.3.1,
PO.3.2,
PO.3.3

Independent test and
evaluation of system
effectiveness,
suitability, and
survivability to include
cyber resilience by the
actual mission user
base.

All application
artifacts, test
plans and
reports.

Reports of test
results

Test management
tool to capture
operational data to
include
instrumentation (as
needed).

Testing

36

Performance
Tests

REQUIRED PO.3.1,
PO.3.2,
PO.3.3

Testing that determine
the stability, speed,
scalability, and
responsiveness of an
application or system
under a given
workload.

Artifacts in the
repository;
Test scenarios;
Data

Test results Test management
tool

Testing

Post-deployment
checkout

PREFERRED PW.4.1,
PW.4.2

Run automated test to
make sure the
important functions of
system are working,
including Early
Operational Test;
Interoperability Test;
Performance Test;
and Compliance Test

Smoke test
scenarios and
test scripts

Test results Test scripts Testing

Post-deployment
security scan

REQUIRED PO.4.1,
PO.4.2,
PW.4.1,
PW.4.2

System and
infrastructure security
scan

Access to system
components and
infrastructure
components

Security
vulnerability
findings

Security compliance
tool

Security

SBOM Software
Composition
Analysis

REQUIRED PS.3.2 Collect and analyze
provenance data for
all components of
each release

Software Bill of
Materials
Vulnerabilities

Analysis report SBOM Analysis tool Security

Software Factory
Risk Continuous
Monitoring

REQUIRED PS.3.2 Monitor Software
Factory controls

Software Factory
controls

Alerts Monitoring tool suite Security

Test Audit REQUIRED PO.2.1,
PS 2.1,
PW.1.2,
PW.2.1

Test audit keeps who
performs what test at
what time and test
results in records

Test activity and
test results

Test audit log Test management
tool

Testing

User Evaluation /
Feedback

REQUIRED PO.4.2 Collect and analyze
user evaluations
and/or feedback

Surveys;
Bug reports;
Trouble tickets

 Testing

37

Virtual Machine Deployment

Legacy applications can be deployed as virtual machines using a standards-based format such as Open Virtualization Format (OVF),
which can be imported by the market-leading hypervisors. The virtualization manager manages the virtual compute, storage, and
network resources. In some hosting environments, such as a general-purpose cloud, the virtualization manager also provides some
security capabilities, such as micro-segmentation, which creates security zones to isolate VMs from one another and secure them
individually. Several capabilities of the virtualization manager are keys to the success of mission application runtime operation and
security, such as health checking, virtual resource monitoring, and scaling. The application production environment infrastructure
must leverage these capabilities in its architecture and configuration.

The use of “clones” from a master image library enables VMs to be created quickly. A clone is made from a snapshot of the master
image. The use of clones also enables the concept of immutable infrastructure by pushing updated, clean images to the VM each
time it is started. Only the master image needs to be patched or updated with the latest developed code; each running image is
restarted to pick up these changes.

3.8.2 Container Deployment

A container manager provides capabilities that check for new versions of containers, deploys the containers to the production
environment, and performs post-deployment checkout. The container manager consists of an OCI-compliant container runtime and a
CNCF Certified Kubernetes, which is an orchestration tool for managing microservices or containerized applications across a cluster
of nodes. The nodes could be bare metal servers or VMs. The container manager may be owned by a mission program or provided
by the cloud hosting environment. It simplifies container management tasks, such as instantiation, configuration, scaling, monitoring,
and rolling updates. The CNCF Certified Kubernetes interacts with the underlying virtualization manager in the cloud environment to
ensure each node’s health and performance, and scale it as needed. This scaling includes container scaling within the CNCF
Certified Kubernetes cluster, but when running in a cloud, it also includes the ability to auto-scale a number of nodes in a cluster by
adding or deleting VMs.

3.8.3 Serverless Deployment

Many cloud providers offer serverless capabilities that utilize managed infrastructure to orchestrate application functions. Serverless
computing leverages compute scaling, process interconnection, and messaging infrastructure within commercial clouds to simplify
and accelerate application delivery, while potentially reducing cost to operate. Cloud-managed CI/CD pipelines may be configured to

38

deliver functions or containers to the operational environments. DevSecOps with DoD Cloud IaC, Microsoft Azure, and GitHub
Reference Design 9provides an implementation of this capability.

3.9 Operate Phase Activities
Operate phase activities include system scaling, load balancing, and backup.

Load balancing monitors resource consumption and demand, and then distributes the workloads across the system resources.
Scaling helps dynamic resource allocation based on demand. Consider the popularity of virtual machines and software containers in
a CNCF Certified Kubernetes cluster as deployment options, both support load balancing and scaling capabilities. Kubernetes
handles the load balancing and scaling at the software container level, while the virtualization manager works at the VM level.

Application deployment must have proper load balancing and scaling policies configured. During runtime, the management layer will
continuously monitor the resources. If the configured threshold is reached or exceeded (for example if memory or Central Processing
Unit (CPU) usage exceeds a pre-set threshold), then the system triggers the load balancing or scaling action(s) automatically. Auto-
scaling must be able to scale both up and down.

Operate phase activities and their related tools are listed in the Operate tab of the Activities & Tools Guidebook tables and
represented here as Table 11. It is understood that specific reference designs will augment this list with their required and preferred
tools for load balancing and scaling.

Table 11: Operate Phase Activities

Activities Baseline SSDF Description Inputs Outputs Tool Dependency Security /
Testing / CM

Business
Operations

REQUIRED PO.3.1,
PO.3.2,
PO.3.3

Continuously
manage resource
usage and billing

Cost utilization
reports, metrics

Optimized
resource
allocation

Operations
dashboard

Capacity
Management

PREFERRED PO.3.1,
PO.3.2,
PO.3.3

Continuously
manage CSP
service

Operational
statistics, logs,
metrics

Optimized
resource
allocation

Operations
dashboard

9 DOD Office of the CIO and DISA Hosting and Compute Center (HaCC) with Microsoft Federal, “DevSecOps with DoD Cloud IaC, Microsoft
Azure, and GitHub”, https://dodcio.defense.gov/Portals/0/Documents/Library/DoDRefDesignCloudGithub.pdf, 2022

https://dodcio.defense.gov/Portals/0/Documents/Library/DoDRefDesignCloudGithub.pdf

39

configuration
parameters

Chaos engineering PREFERRED PO.3.1,
PO.3.2

Chaos Engineering
is practice that
explores how
systems operate
when presented
with previously
unexpected actions
or scenarios. It
may include
injecting faults into
systems (such as
high CPU
consumption,
network latency, or
dependency loss),
changing data
(fuzzing), removing
capabilities, or
otherwise altering
the operational
environment,
observing how the
systems respond,
and then using that
knowledge to
initiate
improvements.
Chaos Engineering
is also defined as
"experimenting on
a distributed
system in order to
build confidence in
the system’s
capability to
withstand turbulent

Test scenarios;
Test data

Test results Chaos engineering
tool

Security

40

conditions in
production."

Cyber OT&E REQUIRED PO.3.1,
PO.3.2

Cyber OT&E
evaluates the
operational
effectiveness,
suitability,
survivability, and
lethality of DoD
systems in
operationally
relevant and
representative
contested
cyberspace

 Security

Logging REQUIRED PO.3.3 Log system events All user,
network,
application, and
data activities

Logs Logging

41

Mission Based
Cyber Risk
Assessments

REQUIRED PW.7.2,
RV.1.1,
RV.1.2,
RV.2.1,
RV.3.1,
RV.3.2,
RV.3.3,

An assessment of
risks based upon
the stated mission
of the system or
platform

NIST 800-53
RMF Control
Implementations
FIPS 199
system
categorization
Information
types
CNSSI 1253

Risk
assessment

Risk assessment
tool

Security

Performance Tests PREFERRED PO.3.1,
PO.3.2

Tests that assess
performance of the
asset in the
operational
environment

Requirements
documents
and/or
database;
Service Level
Agreements

Reports of
observed
performance

Operational
monitoring tools

Testing

Persistent Cyber
Operations Tests

AS
REQUIRED

PO.3.1,
PO.3.2

Tests that are
incorporated into
the operational
environment and
may be used to
assess
cybersecurity
controls at any
time, often
continuously.

Test scenarios;
Test data

Test results;
Alerts

Cybersecurity test
tools

Security

Roll Forward/Roll
Back

PREFERRED PO.3.1,
PO.3.2

Continuously
validate
procedures to roll
forward/roll back

Backups, after-
images

Point-in-time
recovered file

Backup
management;
Database
automation tool

SBOM Software
Composition
Analysis

REQUIRED PS.3.2 Collect and
analyze
provenance data
for all components
of each release

Software Bill of
Materials
Vulnerabilities

Analysis report SBOM Analysis tool Security

42

Software Factory
Risk Continuous
Monitoring

REQUIRED PS.3.2 Monitor Software
Factory controls

Software
Factory controls

Alerts Monitoring tool suite Security

Sustainanbility and
Chaos Testing

PREFERRED PO.3.1,
PO.3.2

Create the
capability to
continuously, but
randomly, cause
failures in the
production system
to test resiliency

Chaos scripts Report and
evaluation

Test management
tool

Testing

Test Audit REQUIRED PO 2.1,
PS 2.1,
PW 1.2,
PW 2.1

Test audit keeps
who performs what
test at what time
and test results in
records

Test activity and
test results

Test audit log Test management
tool

Testing

User Evaluation /
Feedback

REQUIRED PO 4.2 Collect and
analyze user
evaluations and/or
feedback

Surveys;
Bug reports;
Trouble tickets

 Testing

3.10 Monitor Phase Activities
In the monitor phase, tools are utilized to collect and assess key information about the use of the application to discover trends and
identify problem areas. Monitoring spans the underlying hardware resources, network transport, applications / microservices,
containers, interfaces, normal and anomalous endpoint behavior, and security event log analysis. Monitor phase activities are listed
on the Monitor tab in the Activities & Tools Guidebook tables and represented here in Table 12.

NIST SP 800-13710 defines “information security continuous monitoring (ISCM) as maintaining ongoing awareness of information
security, vulnerabilities, and threats to support organizational risk management decisions.”11 It continuously inventories all system
components, monitors the performance and security of all components, and logs application and system events. Other policy
enforcement and miscellaneous considerations include:

11 NIST, NIST SP 800-137, Information Security Continuous Monitoring (ISCM) for Federal Information Systems and Organizations, 2011.

43

• DoD Information Security Continuous Monitoring Strategy (January 2023)
• Policy enforcement, including ensuring hardening of CSP managed services as measured against NIST SP 800-5312.
• Policy enforcement, including Service Categorization and Control Sections for National Security Systems (CNSSI 1253)13
• Policy enforcement, including ensuring compliance of COTS against STIGs.
• Zero Trust concepts, including bi-directional authentication, Software Defined Perimeter (SDP), micro-segmentation with

authenticated and authorized data flows, separation of duties, and dynamic authorization.
• A logging agent on each resource to push logs to a centralized logging service. Log analysis should be performed using a

Security Information and Event Manager (SIEM) / Security Orchestration Automation and Response (SOAR) capability.

Table 12: Monitor Phase Activities

Activities Baseline SSDF Description Inputs Outputs Tool Dependencies Security /
Testing / CM

Asset Inventory to
include SBOMs

REQUIRED PS.3.2,
PW 4.1

Inventory system IT
assets

IT assets Asset inventory Inventory
Management

Configuration
Management

Compliance
Monitoring (COTS)

REQUIRED PO 3.1,
PO 3.2,
PO 3.3

Monitor the state of
compliance of
deployed COTS
against STIGs

Compliance
status

Compliance
reports

Compliance as
Code

Security

Compliance
Monitoring
(resources &
services)

REQUIRED PO.3.1,
PO.3.2,
PO.3.3

Monitor the state of
compliance of
deployed cloud
resources and
services against
NIST SP 800-53
controls

Compliance
status

Compliance
reports

Compliance Monitor Security

12 National Institute for Standards and Technology (NIST), “Security and Privacy Controls for Information Systems and Organizations”, December
10, 2020, https://csrc.nist.gov/publications/detail/sp/800-53/rev-5/final
13 Committee on National Security Systems (CNSS), “Security Categorization and Control Selection for National Security Systems”, 29 July 2022,
https://www.cnss.gov/CNSS/issuances/Instructions.cfm

44

Database
monitoring and
security auditing

PREFERRED PO 3.1,
PO 3.2,
PO 3.3

Database
performance and
activities monitoring
and auditing

Database traffic,
event, and
activities

Logs;
Warnings and
alerts

Database monitoring
tool;
Database security
audit tool;
Issue tracking
system;
Alerting and
notification;
Operations
dashboard

Configuration
Management

Feedback,
including
Operational Test
and Evaluation
(if/as needed)

PREFERRED PO 3.3 The Second Way:
Feedback

Technical
feedback as to
“is the system
built right” and
operational
feedback as to
“was the right
system built”

Updated
requirements /
backlog

Various planning
tools

Log Analysis &
auditing

REQUIRED PO.3.1,
PO.3.2,
PO.3.3

Filter or aggregate
logs;
Analyze and
correlate logs

Logs Alerts and
remediation
reports

Log aggregator Security

Log auditing REQUIRED PO 3.1,
PO.3.2

Ensure possession
of the logs and that
aggregation is
performed correctly

Logs Report Log aggregator
Log analysis &
auditing

Mission Based
Cyber Risk
Assessments

REQUIRED PW.7.2,
RV.1.1,
RV.1.2,
RV.2.1,
RV.3.1,
RV.3.2,
RV.3.3,

An assessment of
risks based upon the
stated mission of the
system or platform

NIST 800-53
RMF Control
Implementations
FIPS 199
system
categorization
Information
types
CNSSI 1253

Risk assessment Risk assessment
tool

Security

45

Runtime
Application Self
Protection (RASP)

PREFERRED PW 8.2, Runtime application
self-protection
(RASP) is a security
technology that uses
runtime
instrumentation to
detect and block
computer attacks by
taking advantage of
information from
inside the running
software. The
technology differs
from perimeter-
based protections
such as firewalls,
that can only detect
and block attacks by
using network
information without
contextual
awareness.

Running system
Test scenarios
Test data

Alerts and
remediation
reports

RASP tool Security

System
configuration
monitoring

PREFERRED PO.3.1,
PO.3.2,
PO.3.3

System
configuration
(infrastructure
components and
software)
compliance
checking, analysis,
and reporting

Running system
configuration;
Configuration
baseline

Compliance
report;
Recommended
actions;
Warnings and
alerts

ISCM;
Issue tracking
system;
Alerting and
notification;
Operations
dashboard

Configuration
Management

System
performance
monitoring

PREFERRED PO.3.1,
PO.3.2,
PO.3.3

Monitor system
hardware, software,
database, and
network
performance;
Baselining system
performance;
Detect anomalies

Running system Performance KPI
measures;
Recommended
actions;
Warnings or alerts

Operation
monitoring
Issue tracking
system
Alerting and
notification
Operations
dashboard

Configuration
Management

46

System Security
monitoring

REQUIRED PO.3.1,
PO.3.2,
PO.3.3,
PO.5.1,
PO.5.2,
RV.1.1

Monitor security of
all system
components
Security vulnerability
assessment
System security
compliance scan

Running system Vulnerabilities;
Incompliance
Findings;
Assessments and
recommendations;
Warnings and
alerts

ISCM;
Issue tracking
system;
Alerting and
notification;
Operations
dashboard

Security

Test Audit REQUIRED PO 2.1,
PS 2.1,
PW 1.2,
PW 2.1

Test audit keeps
who performs what
test at what time and
test results in
records

Test activity and
test results

Test audit log Test management
tool

Testing

Test configuration
audit

PREFERRED PO 3.3 Track test and
security scan results

Test results; Test configuration
audit

Track test and
security scan results

Testing

User Evaluation /
Feedback

REQUIRED PO.4.2 Collect and analyze
user evaluations
and/or feedback

Surveys;
Bug reports;
Trouble tickets

 Testing

3.11 Feedback Phase Activities
The Feedback phase of the DevSecOps lifecycle transmits updates to the product backlog with new features, improvements, bugs,
vulnerabilities, and metrics captured from the Operations team, especially in the Monitor phase. Activities for the Feedback phase are
listed in Table 13.

Table 13: Feedback Phase Activities

Activities Baseline SSDF Description Inputs Outputs Tool Dependencies Security /
Testing / CM

47

Revise Product
Backlog

REQUIRED PO.1.1,
PO.1.2;
PO.1.3,
PO.3.1,
PO.4.1,
RV.2.2,
RV.3.1,
RV.3.2,
RV.3.3,
RV.3.4

Update the product
backlog with new
features,
improvements, bugs,
vulnerabiliy
remediations, and
performance
improvements based
upon collected metrics

Requirements;
Improvements;
Bugs;
Vulnerabilities;
Collected metrics

Updates to the
Product Backlog

Requirements
Management Tool

User Evaluation
/ Feedback

REQUIRED PO.4.2 Collect and analyze
user evaluations and/or
feedback

Surveys;
Bug reports;
Trouble tickets

 Testing

48

4 DevSecOps Tools
The Tools tab of the Activities and Tools Guidebook spreadsheet identifies specific categories of tooling required to support the
proper operation of a software factory within a DevSecOps ecosystem. The tools captured are categorical, not specific commercial
products and/or versions. Each program should identify and select tools that properly support their software development needs.
When possible, DoD enterprise-wide tooling that has already either been approved or has obtained provisional authorization is
preferred. Tools are listed in Table 14.

The Tools tab includes the following columns:

• Tool: A specific tool category
• Features: Common characteristics used to describe the tool category
• Benefits: Simple value-proposition of the tool category
• Inputs: Types of data collected by the tool category
• Outputs: Types of artifacts that result from using the tool category

Table 14: DevSecOps Tools

Tool Features Benefits Inputs Outputs

Alerting and
notification

Notify security teams
and/or administrators
about detected events.
Support automatic
remediation of high-
priority time-critical
events.

Improve visibility of system
events
Reduce system downtime
Improve customer service

Aggregated filtered logs from
the Log Aggregator,
Vulnerability and non-
compliance findings from
Information Security
Continuous Monitoring,
Recommendations from
Information Security
Continuous Monitoring,
Performance statistics from
Operations Monitoring, and
Performance alerts from
Operations Monitoring

Alert messages, emails, etc.
Remediation report
Issue ticket

49

Artifact Repository Binary artifact version
control

Separate binary control from
source control to avoid
external access to source
control system.

Improved build stability by
reducing reliance on external
repositories.

Better quality software by
avoiding outdated artifacts
with known issues.

Artifacts Version controlled artifacts

Asset inventory
management

Maintain a “real-time”
inventory of all
applications, software
licenses, libraries,
operating systems, and
versioning information

Increase situation
awareness

IT assets (applications,
software licenses, libraries,
operating systems, and
versioning information)

Asset inventory

Backup management Data backup
System components
(VM or container)
snapshot

Improve failure recovery Access to the backup source Backup data
System VM or container
snapshot

Build tool Dependency
Management;
Compile;
Link (if appropriate);
Built-in lint stylistic
checking Integration with
IDE

Reduces human mistakes;
Saves time

Source code under version
control;
Artifacts

Binary artifacts stored in the
Artifact repository

Chaos engineering
tool

Orchestrate scripted
changes to the
environments,
applications, or data
related to a test scenario
or experiment; collect
and analyze results

Build confidence in the
system’s capability to
withstand turbulent
conditions in production.

Scripted test scenarios;
Test data

Test results;
Analysis

50

Code quality review
tool

View code changes,
identify defects, reject or
approve the changes,
and make comments on
specific lines. Sets
review rules and
automatic notifications to
ensure that reviews are
completed on time.

Automates the review
process which in turn
minimizes the task of
reviewing the code.

Source code Review results (reject or accept),
code comments

Compliance as Code Monitor the state of
compliance of deployed
COTS against STIGs

Automated detection and,
ideally, remediation of non-
compliance within the
infrastructure

Compliance policies,
Operational environment

Compliance findings,
Remediation recommendations
or logs

Compliance Monitor Monitor the state of
compliance of deployed
cloud resources and
services against NIST
SP 800-53 controls

Provide visibility of
compliance status

Compliance status Compliance reports

Configuration
automation tools

Execute the
configuration scripts to
provision the
infrastructure, security
policy, environment, and
the application system
components.

Configuration automation
Consistent provisioning

Infrastructure configuration
scripts;
Infrastructure configuration
data

Provisioned deployment
infrastructure

Configuration
management
database (CMDB)

Auto-discovery;
Dependency mapping;
Integration with other
tools;
Configuration auditing

Centralized database used
by many systems (such as
asset management,
configuration management,
incident management, etc.)
during development and
operations phases.

IT hardware and software
components information

Configuration items

Configuration
Management Tool

Configuration control Maintains integrity of the
system

Source code, Everything as
Code

Configuration control

Cyber Threat
Intelligence
Subscription(s)

Varying set of tools, from
actor activity based
detection, tech stack,
etc.

Helps with risked-based
decisions in a proactive
manner in lieu of reactivity
when new vulnerabilities are
announced

Cyber threat condition feeds Recommend changes in CSRP

51

Data masking tool Shield personally
identifiable information
or other confidential data

Provide data privacy;
Reduce the risk of data loss
during data breach

Original data Masked data

Data modeling tool Model the
interrelationship and
flows between different
data elements

Ensure the required data
objects by the system are
accurately represented

System requirement;
Business logic

Data model

Database automation
tool

Automate database
tasks, such as
deployments, upgrades,
discovering and
troubleshooting
anomalies, recovering
from failures, topology
changes, running
backups, verifying data
integrity, and scaling.

Simplify database operations
and reduce human errors

Database artifacts;
Data;
Running status and events

Status report;
Warnings;
Alerts

Database encryption
tool

Encrypt data at rest and
in transit

Provide data privacy and
security;
Prevent data loss

Original data Encrypted data

Database monitoring
tool

Baseline database
performance and
database traffic;
Detect anomalies

Improve database
operations continuity

Running database Logs;
Warnings and alerts

Database security
audit tool

Perform user access
and data access audit;
Detect anomalies from
events correlation;
Detect SQL injection;
Generate alert

Enhance database security Running database Audit logs;
Warnings and alerts

Database security
scan and test tool

Find the database
common security
vulnerabilities, such as
weak password, known
configuration risks,
missing patches;
Structured Query
Language (SQL)
injection test tool;

Reduce the security risks Test data;
Test scenarios

Vulnerability findings;
Recommended mitigation
actions

52

Data access control test;
User access control test;
Denial of service test

Database test tool
suite

Tools that facilitate
database test;
It includes test data
generator, database
functional test tool,
database load test tool;

Automate or semi-automate
the database tests

Test data;
Test scenario

Test results

Dependency
checking /Bill of
Materials checking
tool

Identify vulnerabilities in
the dependent
components based on
publicly disclosed open
source vulnerabilities

Secure the overall
application;
Manage the supply chain
risk

BOM, including:
Dependency list
Licensing

Vulnerability report

Dynamic Application
Security Test (DAST)
tool

DAST tools analyze a
running application
dynamically and can
identify runtime
vulnerabilities and
environment related
issues.

Catch the dynamic code
weakness in runtime and
under certain environment
setting.
Identify and fix issues during
continuous integration.

Running software
application;
Fuzz inputs

Dynamic code scan report and
recommended mitigation.

53

InfoSec Continuous
Monitoring (ISCM)
Tool

Monitor network security
Monitor personnel
activity
Monitor configuration
changes
Perform periodical
security scan to all
system components
Monitor the IT assets
and detect deviations
from security, fault
tolerance, performance
best practices.
Monitor and analyze log
files
Audit IT asset's
configuration compliance
Detect and block
malicious code
Continuous security
vulnerability
assessments and scans
Provide browse, filter,
search, visualize,
analysis capabilities
Generate findings,
assessments and
recommendations.
Provide
recommendations and/or
tools for remediating any
non-compliant IT asset
and/or IT workload.

Detect unauthorized
personnel, connections,
devices, and software
Identify cybersecurity
vulnerability
Detect security and
compliance violation
Verify the effectiveness of
protective measures

IT asset
Network
Personnel activities
Known vulnerabilities

Vulnerbilities
Incompliance Findings
Assessments and
recommendations

Integrated
development
environment (IDE)

Source code editor
Intelligent code
completion
Compiler or interpreter
Debugger
Build automation

Visual representation
Increase efficiency
Faster coding with less effort
Improved bug fixing speed
Reproducible builds via
scripts

Developer coding input Source code

54

(integration with a build
tool)

Integrated
development
environment (IDE)
security plugins

Scan and analyze the
code as the developer
writes it, notify developer
of potential code
weakness and may
suggest remediation

Address source code
weaknesses and aid
developers to improve
secure coding skills

Source code
Known weaknesses

source code weakness findings

Interactive
Application Security
Test (IAST) tool

Analyze code for
security vulnerabilities
while the application is
run by an auto-test,
human tester, or any
activity “interacting” with
the application
functionality

Provide accurate results for
fast triage; pinpoint the
source of vulnerabilities

Running application and
operating systems;
Fuzz inputs

Analysis report and
recommended mitigation.

Issue tracking system Bugs and defect
management;
Feature and change
management;
Prioritization
management;
Assignment
management;
Escalation management;
Knowledge base
management

Easy to detect defect trends
Improve software product
quality
Reduce cost and improve
Return on Investment (ROI)

Bug report
Feature/change request
Root cause analysis
Solutions

Issues feature/change tickets.
Issue resolution tracking history

Lint tool Analyzes source code to
flag programming errors,
bugs, stylistic errors, and
suspicious constructs.
Applicable to both
compiled or interpreted
languages

Improve code readability;
Pre-code review;
Finding (syntax) errors
before execution for
interpreted languages

Source code or scripts Analyze results

55

Log aggregator Filter log files for events
of interest (e.g.,
security), and transform
into canonical format

Improve investigations by
correlating logs from multiple
sources

Event Logs,
Database Logs,
Audit Logs,
Database Security Audit
Logs

Aggregated, filtered, formatted
event log

Log analysis Analyze and audit to
detect malicious threats /
activity;
Automated alerting and
workflows for response
Forensics for damage
assessment.
These are typically SIEM
and SOAR tools.

Reduce effort required to
identify threats or
inappropriate activity

Logs Alert messages, emails, etc.
Remediation report and log

Log auditing Audit to ensure
possession of the logs
and that aggregation is
performed correctly

 Logs Audit Logs

Log promotion Filter log files for events
of interest (e.g.,
security), and transform
into canonical format
before pushing the logs
to DoD Common
Security Services

Improve investigations by
filtering logs

Event logs,
database logs,
audit logs,
security audit logs

Aggregated, filtered, formatted
event log record

Logging Logging events for all
user, network,
application, and data
activities

Assist troubleshooting the
issues.
Assist detection of advanced
persistent threats and
forensics.

All user, network,
application, and data
activities

Event logs

Network security test
tool

Simulate real-world
legitimate traffic,
distributed denial of
service (DDOS),
exploits, malware, and
fuzzing.

Validate system security;
Increase attack readiness;
Reduce the risk of system
degradation.

Test configuration Test traffic

Non-security
compliance scan

Such as Section 508
accessibility compliance

Ensures compliance with
non-security programs

Artifacts Compliance report

56

Operations
dashboard

Provide operators a
visual view of operations
status, alerts, and
actions.

Improve operations
management

All operational monitoring
status, alerts, and
recommended actions

Dashboard display

Operations
monitoring

Report various
performance metrics
such as resource
utilization rates, number
of concurrent user
sessions, and
Input/Output (IO) rates;
Provide dashboards to
display performance;
Alert performance issues
Establish a baseline for
comparison

Improve operations
continuity
Identify the area to improve
Better end-user experience

Performance KPI and
Service Level Agreement
(SLA)

Performance statistics
Performance alerts

Project management
system

Task management
Scheduling and time
management
Resource management
Budget management
Risk management

Assist project progress
tracking
Optimize resource allocation

Tasks, scheduling, resource
allocation, etc.

Project plan

Release packaging
tool

Package binary artifacts,
VM images,
infrastructure
configuration scripts,
proper test scripts,
documentation, release
notes as a package;
generate checksum and
digital signature for the
package.

The package may be
prepared for a specific
installer or it is a self-
extracting installer itself.

Release package (such as a
bundle of artifacts, self-
extracting software installer,
software tar file, etc.)

Binary artifacts, VM images,
infrastructure configuration
scripts, proper test scripts,
documentation, release
notes

Release package with checksum
and digital signature (a bundle of
artifacts, such as a self-
extracting software installer, or a
tar file, etc.)

57

Requirements
database

Collect and manage
requirements;
Trace requirements to
their source;
Trace features or design
components to the
requirements

Tracing requirements make
sure all requirements are
handled and minimize
unwanted extra features that
don’t trace to requirements.

Project goal and constraints Requirements documents

Software Bill of
Materials (SBOM)
Software
Composition Analysis
Tool

Software composition
analysis (SCA) analyzes
custom-built software
applications to detect
embedded software and
detect if it is up-to-date,
contains vulnerabilities
or security flaws, or has
licensing requirements

SCA allows developers and
operators to understand
what is contained within the
software that is entering or
operating within their
environment. The automatic
nature of SCA products is
another strength, developers
don't have to manually verify
the contents when
integrating Open-Source
Software (OSS)
components. The
automation also applies to
indirect references to other
OSS components within
code and artifacts

SBOM Analysis report and
recommended mitigation.

Software license
compliance checker

Inventory software
license;
Audit the compliance

Software license compliance
and software asset
management

Purchased license info;
Software instances

Compliance report

Software system
design tool

Assist system design,
components design, and
interface design

Independent of programming
languages
Helps visualize the software
system design

User requirements
Design ideas

System design documents,
Function design document,
Test plan,
System deployment environment
configuration plan

Source code
repository

Source code version
control
Branching and merging
Collaborative code
review

Compare files, identify
differences, and merge the
changes if needed before
committing.
Keep track of application
builds

Source code
Infrastructure as code

Version controlled source code

58

Source code
repository security
plugin

Check the changes for
suspicious content such
as Secure Shell (SSH)
keys, authorization
tokens, passwords and
other sensitive
information before
pushing the changes to
the main repository.
If it finds suspicious
content, it notifies the
developer and blocks
the commit.

Helps prevent passwords
and other sensitive data
from being committed into a
version control repository

Locally committed source
code

Security findings and warnings

Static Application
Security Test (SAST)
tool

SAST analyzes
application static codes,
such as source code,
byte code, binary code,
while they are in a non-
running state to detect
the conditions that
indicate code
weaknesses.

Catch code weaknesses at
an early stage.
Continuous assessment
during development.

Source code;
Known vulnerabilities and
weaknesses

Static code scan report and
recommended mitigation.

Team collaboration
system

Audio/video
conferencing;
chat/messaging;
brainstorming;
discussion board;
group calendars;
file sharing;
Wiki website

Simplify communication and
boost team efficiency

Team meetings;
Design notes;
Documentation

Organized teamwork;
Version controlled documents

Test coverage tool Measures how much
code is exercised while
the automated tests are
running

Shows the fidelity of the test
results

Application code,
Automated tests

The percentage of code that is
exercised by the tests.

Test data generator Generates test data for
the system (such as
network traffic generator,
web request generator)

Increase test fidelity Test scenario,
Test data

Input data for the system under
test

59

Test development
tool

Assists test scenario,
test script, and test data
development.
The specific tool varies,
depending on the test
activity (such as unit
test, penetration test)
and the application type
(e.g., web application, or
Hadoop data analytics)

Increase the automation and
rate of testing

Test plan Test scenarios,
Test scripts,
Test data

Test Management
Tool

Manages requirements,
streamlines test case
design from
requirements, plans test
activities, manages test
environment, tracks test
status and results.

Increases QA team
collaboration and
streamlines test processes.

Requirements,
Test cases,
Test results

Test progress,
Test results statistics

Test tool suite A set of test tools to
perform unit test,
interface test, system
test, integration test,
performance test and
acceptance test of the
software system.
Generate test report
Specific tool varies
depending on the type of
tests, software
application, and
programming language

Increase test automation,
speed

Test scenarios,
Test scripts,
Test data

Test results,
test report

Threat modeling tool Document system
security design;
Analyze the design for
potential security issues;
Review and analysis
against common attack
patterns;
Suggest and manage
mitigation

Allows software architects to
identify and mitigate
potential security issues
early.

System design Potential threats and mitigation
plan

60

Virtualization
Manager

VM instance
management
VM resource monitoring
(provided on hosting
environment)

Centralized VM instantiation,
scaling, and monitoring

VM instance specification
and monitoring policy

Running VM

	1 Introduction
	1.1 Audience and Scope
	1.2 Baselines and Tailoring

	2 DevSecOps Lifecycle and Infinity Loop
	3 DevSecOps Phases and Activities
	3.1 Continuous Activities Cross-References
	3.1.1 Security Activities Cross-References
	3.1.2 Test Activities and Tools Cross-References
	3.1.3 Configuration Management Full Lifecycle Activities

	3.2 Plan Phase Activities
	3.3 Develop Phase Activities
	3.4 Build Phase Activities
	3.5 Test Phase Activities
	3.6 Release Phase Activities
	3.7 Deliver Phase Activities
	3.8 Deploy Phase Activities
	3.8.1 Virtual Machine Deployment
	3.8.2 Container Deployment
	3.8.3 Serverless Deployment

	3.9 Operate Phase Activities
	3.10 Monitor Phase Activities
	3.11 Feedback Phase Activities

	4 DevSecOps Tools

Accessibility Report

		Filename:

		DevSecOps Activities and Tools Guidebook v2.5 508.pdf

		Report created by:

		Marilyn Anderson, 508 Technical Lead

		Organization:

		DoD , CIO

 [Personal and organization information from the Preferences > Identity dialog.]

Summary

The checker found no problems in this document.

		Needs manual check: 0

		Passed manually: 2

		Failed manually: 0

		Skipped: 2

		Passed: 28

		Failed: 0

Detailed Report

		Document

		Rule Name		Status		Description

		Accessibility permission flag		Passed		Accessibility permission flag must be set

		Image-only PDF		Passed		Document is not image-only PDF

		Tagged PDF		Passed		Document is tagged PDF

		Logical Reading Order		Passed manually		Document structure provides a logical reading order

		Primary language		Passed		Text language is specified

		Title		Passed		Document title is showing in title bar

		Bookmarks		Passed		Bookmarks are present in large documents

		Color contrast		Passed manually		Document has appropriate color contrast

		Page Content

		Rule Name		Status		Description

		Tagged content		Passed		All page content is tagged

		Tagged annotations		Passed		All annotations are tagged

		Tab order		Passed		Tab order is consistent with structure order

		Character encoding		Passed		Reliable character encoding is provided

		Tagged multimedia		Passed		All multimedia objects are tagged

		Screen flicker		Passed		Page will not cause screen flicker

		Scripts		Passed		No inaccessible scripts

		Timed responses		Passed		Page does not require timed responses

		Navigation links		Passed		Navigation links are not repetitive

		Forms

		Rule Name		Status		Description

		Tagged form fields		Passed		All form fields are tagged

		Field descriptions		Passed		All form fields have description

		Alternate Text

		Rule Name		Status		Description

		Figures alternate text		Passed		Figures require alternate text

		Nested alternate text		Passed		Alternate text that will never be read

		Associated with content		Passed		Alternate text must be associated with some content

		Hides annotation		Passed		Alternate text should not hide annotation

		Other elements alternate text		Passed		Other elements that require alternate text

		Tables

		Rule Name		Status		Description

		Rows		Passed		TR must be a child of Table, THead, TBody, or TFoot

		TH and TD		Passed		TH and TD must be children of TR

		Headers		Passed		Tables should have headers

		Regularity		Skipped		Tables must contain the same number of columns in each row and rows in each column

		Summary		Skipped		Tables must have a summary

		Lists

		Rule Name		Status		Description

		List items		Passed		LI must be a child of L

		Lbl and LBody		Passed		Lbl and LBody must be children of LI

		Headings

		Rule Name		Status		Description

		Appropriate nesting		Passed		Appropriate nesting

Back to Top

