
UNCLASSIFIED

1
UNCLASSIFIED

September 2021

Version 2.1

This document automatically expires 1-year from publication date unless revised.

DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited.

Unclassified

DevSecOps
Fundamentals
Guidebook:
DevSecOps Tools & Activities

Unclassified

dkluzik
Cleared

UNCLASSIFIED

i
UNCLASSIFIED

Document Set Reference

UNCLASSIFIED

ii
UNCLASSIFIED

Trademark Information
Names, products, and services referenced within this document may be the trade names,
trademarks, or service marks of their respective owners. References to commercial vendors and
their products or services are provided strictly as a convenience to our readers, and do not
constitute or imply endorsement by the Department of any non-Federal entity, event, product,
service, or enterprise.

UNCLASSIFIED

iii
UNCLASSIFIED

Contents
1 Introduction ... 1

1.1 Audience and Scope .. 1
2 DevSecOps Tools and Activities ... 2

2.1 Security Tools & Activities Cross Reference .. 3
2.2 Plan Tools and Activities .. 5
2.3 Develop Tools and Activities ...10
2.4 Build Tools and Activities ..14
2.5 Test Tools and Activities ...17
2.6 Release & Deliver Tools and Activities ..23
2.7 Deploy Tools and Activities ...26

2.7.1 Virtual Machine Deployment ..26
2.7.2 Container Deployment ...26

2.8 Operate Tools and Activities ...29
2.9 Monitor Tools and Activities ..31
2.10 Configuration Management Tools and Activities Cross-Reference36

Figures
Figure 1 DevSecOps Phases and Continuous Feedback Loops .. 1

UNCLASSIFIED

iv
UNCLASSIFIED

Tables
Table 1: Security Activities Summary and Cross-Reference ... 3
Table 2 Specific Security Tools Common to All DevSecOps Reference Designs 4
Table 3: Plan Phase Tools ... 6
Table 4: Plan Phase Activities .. 8
Table 5: Develop Phase Tools ..11
Table 6: Develop Phase Activities ...12
Table 7: Build Phase Tools ...15
Table 8: Build Phase Activities ..16
Table 9: Test Phase Tools ..18
Table 10: Test Phase Activities ...20
Table 11: Release and Deliver Phase Tools ...24
Table 12: Release and Deliver Phase Activities ..25
Table 13: Deploy Phase Tools ..27
Table 14: Deploy Phase Activities ...28
Table 15: Operate Phase Tools ..30
Table 16: Operate Phase Activities ...30
Table 17: Monitor Phase Tools ...32
Table 18: Monitor Phase Activities ..35
Table 19: Configuration Management Activities Summary and Cross-Reference37

UNCLASSIFIED

1
UNCLASSIFIED

1 Introduction
The goal of DevSecOps is to improve customer outcomes and mission value through the
automation, monitoring, and application of security at every phase of the software lifecycle.
Figure 1 DevSecOps Phases and Continuous Feedback Loops conveys the software lifecycle
phases and continuous feedback loops.

Figure 1 DevSecOps Phases and Continuous Feedback Loops

Practicing DevSecOps requires an array of purpose-built tools and a wide range of activities that
rely on those tools. This document conveys the relationship between each DevSecOps phase, a
taxonomy of supporting tools for a given phase, and the set of activities that occur at each
phase cross-referenced to the tool(s) that support the specific activity.

1.1 Audience and Scope
The target audience for this document include:

• DoD Enterprise DevSecOps platform capability providers
• DoD DevSecOps teams
• DoD programs

The Tools and Activities that follow are foundational, but incomplete when considered in
isolation. Each DoD Enterprise DevSecOps Reference Architecture additively defines the

complete set of Tools and Activities required to achieve a specific DevSecOps
implementation.

UNCLASSIFIED

2
UNCLASSIFIED

2 DevSecOps Tools and Activities
The tools and activities that follow are common across all DevSecOps ecosystems. All Activities
and Tools are listed in table format throughout this document.

Tools tables identify specific categories of tooling required to support the proper operation of a
software factory within a DevSecOps ecosystem. The tools captured are categorical, not
specific commercial products and/or versions. Each program should identify and select tools
that properly support their software development needs. When possible, DoD enterprise-wide
tooling that has already either been approved or has obtained provisional authorization is
preferred.

Tools tables include the below columns:

• Tool: A specific tool category
• Features: Common characteristics used to describe the tool category
• Benefits: Simple value-proposition of the tool category
• Inputs: Types of data collected by the tool category
• Outputs: Types of artifacts that result from using the tool category
• Baseline: Either a status of REQUIRED or PREFERRED, where required indicates that

the tool must be available within the software factory as part of the Minimal Viable
Product (MVP) release, and preferred indicates an aspirational capability obtained as the
ecosystem matures

Specific reference designs may elevate a specific tool from PREFERRED to REQUIRED, as
well as add additional tools and/or activities that specifically support the nuances of a given
reference design. Reference designs cannot lower a tool listed in this document from required
to preferred.

Activity tables list a wide range of activities for DevSecOps practices. The activities captured
here do not diminish the fact that each program should define their own unique processes,
choose proper and meaningful activities, and select specific software factory tools suitable for
their software development needs. The continuous process improvement that results from the
DevSecOps continuous feedback loops and performance metrics aggregation should drive the
increase of automation across each of these activities.

Activities tables include the below columns:

• Activities: Actions that occur within the specific DevSecOps phase
• Description: Simple explanation of the activity being performed
• Inputs: Types of data that feed the activity
• Outputs: Types of data that result from the activity
• Tool Dependencies: List of tool categories required to support the activity

UNCLASSIFIED

3
UNCLASSIFIED

2.1 Security Tools & Activities Cross Reference
Security is integrated into the core of the DevSecOps phases, weaved into the fabric that
touches each phase depicted in Figure 1 DevSecOps Phases and Continuous Feedback Loops.
This integrated and wrapped approach to security facilitates automated risk characterization,
monitoring, and risk mitigation across the totality of the application lifecycle. Table 1: Security
Activities Summary and Cross-Reference summarizes this security posture by representing all
of the security activities, the linked DevSecOps phase, and the activities and tools references.

The “Ops” part of DevSecOps means that security information and event management (SIEM)
and security orchestration, automation, and response (SOAR) capabilities are baked-in
throughout each of the eight DevSecOps SDLC phases. Integration into these tools must be
considered at every phase in order to properly practice DevSecOps. This requirement
substantially differentiates DevSecOps from legacy ways of development software where
integration was done after the fact using a “bolt-on” mentality.

Table 1: Security Activities Summary and Cross-Reference

Activities Phase
Activities

Table
Reference

Tool Dependencies Tool Table
Reference

Threat modeling Plan Table 4 Threat modeling tool Table 3
Security code
development Develop Table 6 IDE Table 5

Static code scan
before commit Develop Table 6 IDE security plugins Table 5

Code commit scan Develop Table 6 Source code repository security
plugin Table 5

Static application
security test and scan Build Table 8 SAST tool Table 7

Dependency
vulnerability checking Build Table 8 Dependency checking / BOM

checking tool Table 7

Dynamic application
security test and scan Test Table 10 DAST tool or

IAST tool Table 9

Manual security
testing (such as
penetration test)

Test Table 10 Varies tools and scripts (may
include network security test tool) Table 9

Post-deployment
security scan Deploy Table 14 Security compliance tool Table 13

Operational
dashboard Operate Table 16 Backup Table 15

System Security
monitoring Monitor Table 18 Information Security Continuous

Monitoring (ISCM) Table 17

UNCLASSIFIED

4
UNCLASSIFIED

Table 2 Specific Security Tools Common to All DevSecOps Reference Designs

Tool Features Benefits Baseline
Runtime Defense Creates runtime behavior

models, including whitelist and
least privilege

Dynamic, adaptive cybersecurity REQUIRED

Vulnerability Management Provides cyber vulnerability
management capabilities for
the software factory and the
artifacts produced

Ensures everything is appropriately patched to
avoid known vulnerabilities.

REQUIRED

Common Vulnerabilities and
Exposures (CVE) Service/Host
Based Security

Provides CVEs. Used by the
vulnerability management
agent.

Ensures the system is adequately aware of
ever-evolving cyber threats across all software
artifacts.

REQUIRED

Artifact Repository Storage and retrieval of
software artifacts. These may
be dependency libraries,
COTS components, FOSS
components, etc.

Iron Bank is the DoD enterprise artifact
repository for hardened software artifacts,
including containers.

REQUIRED

Zero Trust Architecture Accepting the position that
perimeter only and/or “bolt-on”
cybersecurity tooling is no
longer enough. Zero Trust
principles, including mTLS
tunnels, must be baked in to
each of the eight phases of the
DevSecOps SDLC.

Reduces the attack surface and improves
baked-in security, further reducing the risk of
exposure and compromise.

REQUIRED

Behavior Detection Ability to establish the
common types of behaviors
that exist both within the
software factory and across
each environment.

Alerting to the effect of “I saw something.” REQUIRED

Behavior Prevention Ability to proactive or rapidly
deny or stop an anomaly from
occurring either in the software
factory or across any of its
environments.

Alerting and notification to the effect of “I
inhibited something.”

PREFERRED

UNCLASSIFIED

5
UNCLASSIFIED

2.2 Plan Tools and Activities
Planning tools support software development activities planning, which includes configuration
management planning, change management planning, project management planning, system
design, software design, test planning, and security planning. Some tools will be used
throughout the software lifecycle, such as a team collaboration tool, an issue tracking system,
and a project management system. Some tools are shared at the enterprise level across
programs. Policy and enforcement strategy should be established for access controls on various
tools.

Table 3: Plan Phase Tools lists the typical tools that assist the planning process. The activities
supported by the plan phase are listed in Table 4: Plan Phase Activities. Some activities are
suitable at enterprise or program level, such as DevSecOps ecosystem design, project team
onboarding planning, and change management planning. Others fit at the project level and are
considered continuous in the DevSecOps lifecycle.

UNCLASSIFIED

6
UNCLASSIFIED

Table 3: Plan Phase Tools

Tool Features Benefits Inputs Outputs Baseline
Team collaboration
system

Audio/video conferencing;
chat/messaging;
brainstorming
discussion board;
group calendars;
file sharing;
Wiki website

Simplify
communication and
boost team
efficiency

Team meetings;
Design notes;
Documentation

Organized teamwork;
Version controlled
documents

REQUIRED

Issue tracking
system

Bugs and defect management;
Feature and change
management;
Prioritization management;
Assignment management;
Escalation management;
Knowledge base management

Easy to detect
defect trends
Improve software
product quality
Reduce cost and
improve Return on
Investment (ROI)

Bug report
Feature/change request
Root cause analysis
Solutions

Issues
feature/change
tickets.
Issue resolution
tracking history

REQUIRED

Project
management
system

Task management
Scheduling and time
management
Resource management
Budget management
Risk management

Assist project
progress tracking
Optimize resource
allocation

Tasks, scheduling,
resource allocation, etc.

Project plan REQUIRED

Asset inventory
management

Maintain a “real-time” inventory of
all applications, software
licenses, libraries, operating
systems, and versioning
information

Increase situation
awareness

IT assets (applications,
software licenses,
libraries, operating
systems, and
versioning information)

Asset inventory PREFERRED

Configuration
Management Tool

Configuration control Maintains integrity
of the system

Source code,
Everything as Code

Configuration control REQUIRED

Configuration
management
database (CMDB)

Auto-discovery;
Dependency mapping;
Integration with other tools;
Configuration auditing

Centralized
database used by
many systems
(such as asset
management,
configuration
management,
incident
management, etc.)
during development

IT hardware and
software components
information

Configuration items PREFERRED

UNCLASSIFIED

7
UNCLASSIFIED

Tool Features Benefits Inputs Outputs Baseline
and operations
phases.

Software system
design tool

Assist system design,
components design, and interface
design

Independent of
programming
languages
Helps visualize the
software system
design

User requirements
Design ideas

System design
documents,
Function design
document,
Test plan,
System deployment
environment
configuration plan

PREFERRED

Threat modeling
tool

Document system security
design;
Analyze the design for potential
security issues;
Review and analysis against
common attack patterns;
Suggest and manage mitigation

Allows software
architects to
identify and
mitigate potential
security issues
early.

System design Potential threats and
mitigation plan

PREFERRED

Data modeling tool Model the interrelationship and
flows between different data
elements

Ensure the required
data objects by the
system are
accurately
represented

System requirement;
Business logic

Data model PREFERRED
(if using a
database)

Requirements
database

Collect and manage
requirements; trace requirements
to their source; trace features or
design components to the
requirements

Tracing
requirements make
sure all
requirements are
handled and
minimize unwanted
extra features that
don’t trace to
requirements.

Project goal and
constraints

Requirements
documents

PREFERRED

UNCLASSIFIED

8
UNCLASSIFIED

Table 4: Plan Phase Activities

Activities Description Inputs Outputs Tool Dependencies
DevSecOps process
design

Design the DevSecOps
process workflows that are
specific to this project

- Change management
process;
- System design;
- Release plan & schedule.

DevSecOps process flow chart;
DevSecOps ecosystem tool
selection;
Deployment platform selection

Team collaboration
system

Project team
onboarding planning

Plan the project team
onboarding process,
interface, access control
policy

Organization policy Onboarding plan Team collaboration
system

Change management
planning

Plan the change control
process

- Organizational policy;
- Software development
best practice.

Change control procedures;
Review procedures;
Control review board;
change management plan

Team collaboration
system;
Issue tracking system

Configuration
identification

Discover or manual input
configuration items into
CMDB;
Establish system baselines

-IT infrastructure asset;
- Software system
components (include
DevSecOps tools);
-code baselines
-document baselines.

Configuration items CMDB;
Source code
repository;
Artifact repository;
Team collaboration
system

Configuration
management (CM)
planning

Plan the configuration control
process;
Identify configuration items

- Software development,
security and operations
best practice;
- IT infrastructure asset;
- Software system
components.

CM processes and plan;
CM tool selection;
Responsible configuration
items;

Tagging strategy

Team collaboration
system;
Issue tracking system

Software requirement
analysis

Gather the requirements
from all stakeholders

- Stakeholder inputs or
feedback;
- Operation monitoring
feedback;
- Test feedback.

Requirements Documents
-Feature requirements
-Performance requirements
-Privacy requirements
-Security requirements

Requirements tool;
Team collaboration
system;
Issue tracking system

System design Design the system based the
requirements

Requirements database or
documents

System Design Documents:
-System architecture
-Functional design
-Data flow diagrams
-Test plan

Team collaboration
system;
Issue tracking system
Software system
design tools

UNCLASSIFIED

9
UNCLASSIFIED

Activities Description Inputs Outputs Tool Dependencies
-Infrastructure configuration
plan
-Tool selections
- Ecosystem Tools:
 -Development tool
 -Test tool
 -Deployment platform

Project planning Project task management
Release planning

 -Project Plan
-Task plan & schedule;
-Release plan & schedule.

Team collaboration
system;
Project management
system

Risk management Risk assessment - System architecture;
- Supply chain information;
- Security risks.

Risk management plan Team collaboration
system;

Threat modeling Identify potential threats,
weaknesses and
vulnerabilities. Define the
mitigation plan

System design Potential threats and mitigation
plan

Threat modeling tool

Database design Data modeling; database
selection;
Database deployment
topology

System requirement;
System design

Database design document Data modeling tool;
Team collaboration
system

Design review Review and approve plans
and documents

Plans and design
documents;

Review comments;
Action items

Team collaboration
system

Documentation version
control

Track design changes Plans and design
documents;

Version controlled documents Team collaboration
system

UNCLASSIFIED

10
UNCLASSIFIED

2.3 Develop Tools and Activities
Develop phase tools support the development activities that convert requirements into source
code. The source code includes application code, test scripts, Infrastructure as Code, Security
as Code, DevSecOps workflow scripts, etc. The development team may rely on a single modern
integrated development environment (IDE) for multiple programming language support. The IDE
code assistance feature aids developers with code completion, semantic coloring, and library
management to improve coding speed and quality. The integrated compiler, interpreter, lint
tools, and static code analysis plugins can catch code mistakes and suggest fixes before
developers check code into the source code repository. Source code peer review or pair
programming are other ways to ensure code quality control. All the code generated during
development must be committed to the source code repository and thus version controlled.
Committed code that breaks the build should be checked in on a branch and not merged into
the trunk until it is fixed.

Although not considered an explicit tool or activity, it is important that DevSecOps teams
establish a firm strategy to design and create composable software artifacts that contain new or
updated capabilities released through a CI/CD pipeline. Only through application decomposition
into a discrete set of manageable services is it possible to properly avoid high-risk monolithic
development practices.

The components that facilitate code development, along with their inputs and outputs, are listed
in Table 5: Develop Phase Tools, and the activities supported by these tools are listed in Table
6: Develop Phase Activities.

UNCLASSIFIED

11
UNCLASSIFIED

Table 5: Develop Phase Tools

Tool Features Benefits Inputs Outputs Baseline
Integrated
development
environment
(IDE)

Source code editor
Intelligent code completion
Compiler or interpreter
Debugger
Build automation (integration with a
build tool)

Visual representation
Increase efficiency
Faster coding with less
effort
Improved bug fixing
speed
Reproducible builds via
scripts

Developer coding
input

Source code REQUIRED

Integrated
development
environment
(IDE) security
plugins

Scan and analyze the code as the
developer writes it, notify developer
of potential code weakness and may
suggest remediation

Address source code
weaknesses and aid
developers to improve
secure coding skills

Source code; known
weaknesses

source code
weakness findings

PREFERRED

Source code
repository

Source code version control
Branching and merging
Collaborative code review

Compare files, identify
differences, and merge
the changes if needed
before committing.
Keep track of application
builds

Source code
Infrastructure as
code

Version controlled
source code

REQUIRED

Source code
repository
security plugin

Check the changes for suspicious
content such as Secure Shell (SSH)
keys, authorization tokens,
passwords and other sensitive
information before pushing the
changes to the main repository.
If it finds suspicious content, it
notifies the developer and blocks the
commit.

Helps prevent
passwords and other
sensitive data from
being committed into a
version control
repository

Locally committed
source code

Security findings
and warnings

PREFERRED

Code quality
review tool

View code changes, identify defects,
reject or approve the changes, and
make comments on specific lines.
Sets review rules and automatic
notifications to ensure that reviews
are completed on time.

Automates the review
process which in turn
minimizes the task of
reviewing the code.

Source code Review results
(reject or accept),
code comments

PREFERRED

UNCLASSIFIED

12
UNCLASSIFIED

Table 6: Develop Phase Activities

Activities Description Inputs Outputs Tool Dependencies
Application code
development

Application coding Developer coding and
appropriate unit,
integration, etc. testing
input

Source code & test
results

IDE

Infrastructure code
development

-System components and
infrastructure orchestration coding
-Individual component configuration
script coding

Developer coding and
appropriate unit,
integration, etc. testing
input

Source code & test
results

IDE

Security code
development

Security policy enforcement script
coding

Developer coding and
appropriate unit,
integration, etc. testing
input

Source code & test
results

IDE

Test development Develop detailed test procedures,
test data, test scripts, test scenario
configuration on the specific test tool

Test plan Test procedure
document;
Test data file;
Test scripts

IDE;
Specific test tool

Database development Implement the data model using data
definition language or data structure
supported by the database;
Implement triggers, views or
applicable scripts;
Implement test scripts, test data
generation scripts.

Data model Database artifacts
(including data
definition, triggers, view
definitions, test data,
test data generation
scripts, test scripts, etc.)

IDE or tools come
with the database
software

Code commit Commit source code into version
control system

Source code Version controlled
source code

Source code
repository

Code commit scan Check the changes for sensitive
information before pushing the
changes to the main repository.
If it finds suspicious content, it
notifies the developer and blocks the
commit.

Locally committed
source code

Security findings and
warnings

Source code
repository security
plugin

Code review Perform code review to all source
code. Note that pair programming
counts.

Source code Review comments Code quality review
tool

Documentation Detailed implementation
documentation

User input;
Developed Source Code

Documentation; IDE or document
editor or build tool

UNCLASSIFIED

13
UNCLASSIFIED

Activities Description Inputs Outputs Tool Dependencies
Auto generated
Application
Programming Interface
(API) documentation

Static code scan before
commit

Scan and analyze the code as the
developer writes it. Notify developers
of potential code weakness and
suggest remediation.

Source code; known
weaknesses

source code weakness
findings

IDE security plugins

VM hardening Harden the deliverable for production
deployment

Running VM -Vulnerability report and
recommended mitigation

Security compliance
tool

Code Commit Logging Logging of successful code commits,
or analysis of rejected commits,
which will have benefits to security
and insider threat protections

-Review Comments
-Source Code
Weakness Findings
-Version-Controlled
Source Code
-Security Findings and
Warnings

Code Commit Log

UNCLASSIFIED

14
UNCLASSIFIED

2.4 Build Tools and Activities
Build tools perform the tasks of building and packaging applications, services, and
microservices into artifacts. For languages like C++, building starts with compiling and linking.
The former is the act of turning source code into object code and the latter is the act of
combining object code with libraries to create an executable file. For Java Virtual Machine
(JVM) based languages, building starts with compiling to class files, then building a compressed
file such as a jar, war, or ear file, which includes some metadata, and may include other files
such as icon images. For interpreted languages, such as Python or JavaScript, there is no need
to compile, but lint tools help to check for some potential errors such as syntax errors. Building
should also include generating documentation, such as Javadoc, copying files like libraries or
icons to appropriate locations, and creating a distributable file such as a tar or zip file. The build
script should also include targets for running automated unit tests.

Modern build tools can also be integrated into both an IDE and a source code repository to
enable building both during development and after committing. For those applications that use
containers, the build stage also includes a containerization tool.

Build-related tools along with their inputs and outputs are listed in Table 7: Build Phase Tools,
and the activities supported by the build-related tools are listed in Table 8: Build Phase
Activities.

UNCLASSIFIED

15
UNCLASSIFIED

Table 7: Build Phase Tools

Tool Features Benefits Inputs Outputs Baseline
Build tool Dependency Management

Compile
Link (if appropriate)
Built-in lint stylistic checking
Integration with IDE

Reduces human mistakes
Saves time

Source code under
version control
Artifacts

Binary artifacts stored
in the Artifact repository

REQUIRED

Lint tool Analyzes source code to flag
programming errors, bugs,
stylistic errors, and suspicious
constructs.
Applicable to both compiled or
interpreted languages

Improve code readability;
Pre-code review;
Finding (syntax) errors
before execution for
interpreted languages

Source code or scripts Analyze results PREFERRED

Artifact
Repository

Binary artifact version control Separate binary control
from source control to avoid
external access to source
control system.

Improved build stability by
reducing reliance on
external repositories.

Better quality software by
avoiding outdated artifacts
with known issues.

Artifacts Version controlled
artifacts

REQUIRED

Static
Application
Security Test
(SAST) tool

SAST analyzes application
static codes, such as source
code, byte code, binary code,
while they are in a non-running
state to detect the conditions
that indicate code weaknesses.

Catch code weaknesses at
an early stage.
Continuous assessment
during development.

Source code; known
vulnerabilities and
weaknesses

Static code scan report
and recommended
mitigation.

REQUIRED

Dependency
checking /Bill
of Materials
checking tool

Identify vulnerabilities in the
dependent components based
on publicly disclosed open
source vulnerabilities

Secure the overall
application;
Manage the supply chain
risk

BOM, including:
-Dependency list -
Licensing

Vulnerability report PREFERRED

https://en.wikipedia.org/wiki/Interpreted_language

UNCLASSIFIED

16
UNCLASSIFIED

Table 8: Build Phase Activities

Activities Description Inputs Outputs Tool
Dependencies

Build Compile and link Source code;
dependencies

-Binary artifacts
-Build Report

Build tool;
Lint tool;
Artifact repository

Static application
security test and scan

Perform SAST to the software
system

Source code; known
vulnerabilities and
weaknesses

Static code scan
report and
recommended
mitigation.

SAST tool

Dependency
vulnerability checking

Identify vulnerabilities in the
open source dependent
components

Dependency list or BOM
list

Vulnerability report Dependency checking / BOM
checking tool

Release packaging Package binary artifacts, VM
images, infrastructure
configuration scripts, proper test
scripts, documentation,
checksum, digital signatures,
and release notes as a
package.

Binary artifacts;
Scripts;
Documentation;
Release notes

Released package
with checksum and
digital signature

Release packaging tool

Store artifacts Store artifacts to the artifact
repository

Binary artifacts;
Database artifacts;
Scripts;
Documentation;

Versioned controlled
artifacts

Artifact Repository

Build configuration
control and audit

Track build results, SAST and
dependency checking report;
Generate action items;
Make go/no-go decision to the
next phase

Build results;
SAST report;
Dependency checking
report

Version controlled
build report;
Action items;
Go/no-go decision

Team collaboration system;
Issue tracking system;
CI/CD orchestrator

UNCLASSIFIED

17
UNCLASSIFIED

2.5 Test Tools and Activities
The discipline of testing changes within the automated processes of DevSecOps. Testing
focuses on how the system supports the mission. One implication of this evolution is that re-
skilling of the test team is needed; the old skill set of "sit at a screen and use the app as you
were trained for 3 days to use it" is no longer applicable. Rather, testing is about understanding
the intent of the mission and how to test that using automation. The testers will need to become
coders of that automation.

Test tools support continuous testing across the software development lifecycle. Test activities
may include, but are not limited to, unit test, functional test, integration test, system test,
regression test, acceptance test, performance test, and variety of security tests. All tests start
with test planning and test development, which includes detailed test procedures, test
scenarios, test scripts, and test data. Automated testing can be executed by running a set of
test scripts or running a set of test scenarios on the specific test tool without human intervention.
If full automation is not possible, the highest percentage of automation is desired. It is highly
recommended to leverage emulation and simulation to test proper integration between
components such as microservices and various sensors/systems so integration testing can be
automated as much as possible. Automation will help achieve high test coverage and make
continuous ATO practicable, as well as significantly increase the quality of delivered software.

The components involved with the test phase are listed in Table 9: Test Phase Tools. The
activities supported by the test phase are listed in Table 10: Test Phase Activities. These
activities happen at different test stages:

• Development stage: unit test, SAST discussed in the build phase.

• System test stage: DAST or IAST, integration test, system test.

• Pre-production stage: manual security test, performance test, regression test,
acceptance test, container policy enforcement, and compliance scan.

• Production stage: operational test and evaluation with mission users.

Test audit, test deployment, and configuration audit happen at all stages.

UNCLASSIFIED

18
UNCLASSIFIED

Table 9: Test Phase Tools

Tool Features Benefits Inputs Outputs Baseline
Test development
tool

Assists test scenario, test script,
and test data development.
The specific tool varies, depending
on the test activity (such as unit
test, penetration test) and the
application type (e.g., web
application, or Hadoop data
analytics)

Increase the automation
and rate of testing

Test plan test scenarios, test
scripts, test data

REQUIRED

Test data
generator

Generates test data for the system
(such as network traffic generator,
web request generator)

Increase test fidelity Test scenario, test
data

Input data for the
system under test

PREFERRED

Test tool suite A set of test tools to perform unit
test, interface test, system test,
integration test, performance test
and acceptance test of the software
system.
Generate test report
Specific tool varies depending on
the type of tests, software
application, and programming
language

Increase test
automation, speed

Test scenario, test
scripts, test data

Test results, test
report

REQUIRED

Test coverage
tool

Measures how much code is
exercised while the automated
tests are running

Shows the fidelity of the
test results

Application code,
automated tests

The percentage of
code that is
exercised by the
tests.

REQUIRED

Test
Management
Tool

Manages requirements,
streamlines test case design from
requirements, plans test activities,
manages test environment, tracks
test status and results.

Increases QA team
collaboration and
streamlines test
processes.

Requirements, test
cases, test results

Test progress, test
results statistics

PREFERRED

Non-security
compliance scan

Such as Section 508 accessibility
compliance

Ensures compliance Artifacts Compliance report PREFERRED

Software license
compliance
checker

Inventory software license;
Audit the compliance.

Software license
compliance and
software asset
management

Purchased license
info;
Software
instances

Compliance report PREFERRED

UNCLASSIFIED

19
UNCLASSIFIED

Tool Features Benefits Inputs Outputs Baseline
Dynamic
Application
Security Test
(DAST) tool

DAST tools analyze a running
application dynamically and can
identify runtime vulnerabilities and
environment related issues.

Catch the dynamic code
weakness in runtime
and under certain
environment setting.
Identify and fix issues
during continuous
integration.

Running software
application; fuzz
inputs

dynamic code scan
report and
recommended
mitigation.

PREFERRED

Interactive
Application
Security Test
(IAST) tool

Analyze code for security
vulnerabilities while the application
is run by an auto-test, human
tester, or any activity “interacting”
with the application functionality

Provide accurate results
for fast triage; pinpoint
the source of
vulnerabilities

Running
application, and
operating systems;
Fuzz inputs

Analysis report and
recommended
mitigation.

PREFERRED

Network security
test tool

Simulate real-world legitimate
traffic, distributed denial of service
(DDOS), exploits, malware, and
fuzzing.

Validate system
security; increase attack
readiness; reduce the
risk of system
degradation.

Test configuration Test traffic PREFERRED

Database test
tool suite

Tools that facilitate database test;
It includes test data generator,
database functional test tool,
database load test tool;

Automate or semi-
automate the database
tests

Test data;
Test scenario

Test results PREFERRED
if using a
database

Database
security scan and
test tool

Find the database common security
vulnerabilities, such as weak
password, known configuration
risks, missing patches;
Structured Query Language (SQL)
injection test tool;
Data access control test;
User access control test;
Denial of service test

Reduce the security
risks

Test data;
Test scenarios

Vulnerability
findings;
Recommended
mitigation actions

PREFERRED
if using a
database

UNCLASSIFIED

20
UNCLASSIFIED

Table 10: Test Phase Activities

Activities Description Inputs Outputs Tool
Dependencies

Unit test Assist unit test script development and
unit test execution. It is typically
language specific.

Unit test script, individual
software unit under test (a
function, method or an
interface), test input data,
and expected output data

Test report to
determine whether
the individual software
unit performs as
designed.

Test tool suite, Test
coverage tool

Dynamic application
security test and scan

Perform DAST or IAST testing to the
software system

Running application and
underlying OS; fuzz inputs

Vulnerability, static
code weakness
and/or dynamic code
weakness report and
recommended
mitigation

DAST tool or
IAST tool

Integration test Develops the integration test scripts
and execute the scripts to test several
software units as a group with the
interaction between the units as the
focus.

Integration test scripts, the
software units under test,
test input data, and
expected output data

Test report about
whether the
integrated units
performed as
designed.

Test tool suite

System test System test uses a set of tools to test
the complete software system and its
interaction with users or other external
systems. Includes interoperability test,
which demonstrates the system's
capability to exchange mission critical
information and services with other
systems.

System test scripts, the
software system and
external dependencies,
test input data and
expected output data

Test result about if the
system performs as
designed.

Test tool suite

Manual security test Such as penetration test, which uses a
set of tools and procedures to evaluate
the security of the system by injecting
authorized simulated cyber-attacks to
the system.

CI/CD orchestrator does not automate
the test, but the test results can be a
control point in the pipeline.

Running application,
underlying OS, and
hosting environment

Vulnerability report
and recommended
mitigation

Varies tools and
scripts (may include
network security test
tool)

UNCLASSIFIED

21
UNCLASSIFIED

Activities Description Inputs Outputs Tool
Dependencies

Performance test Ensure applications will perform well
under the expected workload. The test
focus is on application response time,
reliability, resource usage and
scalability.

Test case, test data, and
the software system

Performance metrics Test tool suite, Test
data generator

Regression test A type of software testing to confirm
that a recent program or code change
has not adversely affected existing
features.

Functional and non-
functional regression test
cases; the software
system

Test report Test tool suite

Acceptance test Conduct operational readiness test of
the system. It generally includes:
Accessibility and usability test
failover and recovery test
performance, stress and volume test
security and penetration test
interoperability test
compatibility test
supportability and maintainability

The tested system
Supporting system
Test data

Test report Test tool suite, Non-
security compliance
scan

Compliance scan Compliance audit Artifacts;
Software instances;
System components

Compliance reports Non-security
compliance scan;
Software license
compliance checker;
Security compliance
tool

Test audit Test audit keeps who performs what
test at what time and test results in
records

Test activity and test
results

Test audit log Test management
tool

Test deployment Deploy application and set up testing
environment using Infrastructure as
Code

Artifacts (application
artifacts, test code)
Infrastructure as Code

The environment
ready to run tests

Configuration
automation tool;
IaC

Database functional
test

Perform unit test and functional test to
database to verify the data definition,
triggers, constrains are implemented as
expected

Test data;
Test scenarios

Test results Database test tools

Database non-
functional test

Conduct performance test, load test,
and stress test;
Conduct failover test

Test data;
Test scenarios

Test results Database test tools

UNCLASSIFIED

22
UNCLASSIFIED

Activities Description Inputs Outputs Tool
Dependencies

Database security test Perform security scan;
Security test

Test data;
Test scenarios

Test results Vulnerability findings;
Recommended
mitigation actions

Test configuration
audit

Track test and security scan results;

Test results;
Security scan and
compliance scan report

Version controlled test
results;
Action items

Team collaboration
system;
Issue tracking system;
CI/CD orchestrator

Test configuration
control

Generate action items;
Make go/no-go decision to the next
phase.
(There may be several iterations for
several tests across stages)

Version controlled test
results

Go/no-go decision Team collaboration
system;
Issue tracking system;
CI/CD orchestrator

Development Tests
and Operational Tests

Independent Government test and
evaluation at the system level using
mission threads

System under test, test
plans, test procedures

Known CVEs, privacy
requirements, security
requirements, and
potential threats

Test reports and
evaluation

Remediation
recommendations

Specific test
management and
execution tools

UNCLASSIFIED

23
UNCLASSIFIED

2.6 Release & Deliver Tools and Activities
In the release and deliver phase, the software artifacts are digitally signed to verify that they
have passed build, all tests, and security scans. They are then delivered to the artifact
repository. The content of the artifacts depends on the application. It may include, but is not
limited to, container images, VM images, binary executables (such as jar, war, and ear files),
test results, security scan results, and Infrastructure as Code deployment scripts. Artifacts will
be tagged with the release tag if GO release decision is made based on the configuration audit
results. The artifacts with the release tag are delivered to production.

The mission program could have more than one artifact repository, though more than likely
there is a centralized repo where separate artifact types are appropriately tagged. One artifact
repository (or set of tags) is used in the build stage to store build results. The test deployment
activity can fetch the artifacts from the build stage artifact repository to deploy the application
into various environments (development, test, or pre-production). Another artifact repository (or
set of tags) may be used to stage the final production deliverables. The production deployment
will get all the artifacts from the production artifact repository to deploy the application.

Some mission program application systems have geographically distributed operational regions
across the country or even overseas. In order to increase deployment velocity, a remote
operational region may have its own local artifact repository that replicates the artifact repository
completely or partially. During release, a new artifact is pushed into the artifact repository and
then replicated to other regional artifact repositories.

The tools that support the release and deliver phase are listed in Table 11: Release and Deliver
Phase Tools, and the common activities supported by the release and deliver-related tools are
listed in Table 12: Release and Deliver Phase Activities.

UNCLASSIFIED

24
UNCLASSIFIED

Table 11: Release and Deliver Phase Tools

Tool Features Benefits Inputs Outputs Baseline
Release
packaging
tool

Package binary artifacts, VM
images, infrastructure
configuration scripts, proper test
scripts, documentation, release
notes as a package; generate
checksum and digital signature
for the package.

The package may be prepared for
a specific installer or it is a self-
extracting installer itself.

Release package (such as a
bundle of artifacts, self-
extracting software installer,
software tar file, etc.)

Binary artifacts,
VM images,
infrastructure
configuration
scripts, proper test
scripts,
documentation,
release notes

Release package with
checksum and digital
signature (a bundle of
artifacts, such as a self-
extracting software
installer, or a tar file,
etc.)

REQUIRED
if using VMs

UNCLASSIFIED

25
UNCLASSIFIED

Table 12: Release and Deliver Phase Activities

Activities Description Inputs Outputs Tool
Dependency

Release go / no-go
decision

This is part of configuration audit;
Decision on whether to release artifacts to the artifact
repository for the production environment.

Design
documentation;
Version controlled
artifacts; Version
controlled test
reports;
Security test and
scan reports

go / no-go
decision;
Artifacts are
tagged with
release tag if go
decision is made

CI/CD
Orchestrator

Deliver released
artifacts

Push released artifacts to the artifact repository Release package New release in the
artifact repository

Artifacts
repository

Artifacts replication Replicate newly release artifacts to all regional artifact
repositories

Artifacts Artifacts in all
regional artifact
repositories

Artifacts
repositories
(release,
regional)

Ops Team Acceptance Testing on the delivered artifacts to ensure that they meet
operational requirements

Release package Accepted release
package

Configuration
Integration Testing

 Accepted Release
Package

Configuration
Results

Development Test and
Operational Test

 Known CVEs,
privacy
requirements,
security
requirements, and
potential threats

Recommendations

Parallel government
testing

 Feature
requirements and
performance
requirements

Recommendations

Delivery Results
Review

 Configuration
results and
Recommendations

Production Push
Go/No-Go
Decision

UNCLASSIFIED

26
UNCLASSIFIED

2.7 Deploy Tools and Activities
The tools used in the Deploy phase are environment and deployment stage dependent. The two
dominant deployment options include virtual machines and software containers.

2.7.1 Virtual Machine Deployment

Legacy applications can be deployed as virtual machines using a standards-based format such
as Open Virtualization Format (OVF), which can be imported by the market-leading hypervisors.
The virtualization manager manages the virtual compute, storage, and network resources. In
some hosting environments, such as a general-purpose cloud, the virtualization manager also
provides some security capabilities, such as micro-segmentation, which creates security zones
to isolate VMs from one another and secure them individually. Several capabilities of the
virtualization manager are keys to the success of mission application runtime operation and
security, such as health checking, virtual resource monitoring, and scaling. The application
production environment infrastructure has to leverage these capabilities in its architecture and
configuration.

The use of “clones” from a master image library enables VMs to be created quickly. A clone is
made from a snapshot of the master image. The use of clones also enables the concept of
immutable infrastructure by pushing updated, clean images to the VM each time it is started.
Only the master image needs to be patched or updated with the latest developed code; each
running image is restarted to pick up these changes.

2.7.2 Container Deployment

A container manager provides capabilities that check for new versions of containers, deploys
the containers to the production environment, and performs post-deployment checkout. The
container manager consists of an OCI-compliant container runtime and a CNCF Certified
Kubernetes, which is an orchestration tool for managing microservices or containerized
applications across a cluster of nodes. The nodes could be bare metal servers or VMs. The
container manager may be owned by a mission program or provided by the cloud hosting
environment. It simplifies container management tasks, such as instantiation, configuration,
scaling, monitoring, and rolling updates. The CNCF Certified Kubernetes interacts with the
underlying virtualization manager in the cloud environment to ensure each node’s health and
performance, and scale it as needed. This scaling includes container scaling within the CNCF
Certified Kubernetes cluster, but when running in a cloud, it also includes the ability to auto-
scale a number of nodes in a cluster by adding or deleting VMs.

Deploy phase tools and their related activities are listed in Table 13: Deploy Phase Tools and
Table 14: Deploy Phase Activities, respectively.

UNCLASSIFIED

27
UNCLASSIFIED

Table 13: Deploy Phase Tools

Tool Features Benefits Inputs Outputs Baseline
Virtualization
Manager

VM instance management
VM resource monitoring
(provided on hosting environment)

Centralized VM
instantiation, scaling,
and monitoring

VM instance
specification and
monitoring policy

Running VM REQUIRED
if using VMs

Data
masking tool

Shield personally identifiable
information or other confidential data

Provide data privacy;
Reduce the risk of data
loss during data breach

Original data Masked data PREFERRED
if database
contains
sensitive data

Database
encryption
tool

Encrypt data at rest and in transit Provide data privacy and
security;
Prevent data loss

Original data Encrypted data REQUIRED
if database
contains highly
sensitive data

Database
automation
tool

Automate database tasks, such as
deployments, upgrades, discovering
and troubleshooting anomalies,
recovering from failures, topology
changes, running backups, verifying
data integrity, and scaling.

Simplify database
operations and reduce
human errors

Database artifacts;
Data;
Running status and
events

Status report;
Warnings;
alerts

PREFERRED
if using a
database

Configuratio
n
automation
tools

Execute the configuration scripts to
provision the infrastructure, security
policy, environment, and the
application system components.

Configuration
automation
Consistent provisioning

Infrastructure
configuration
scripts
Infrastructure
configuration data

Provisioned
deployment
infrastructure

REQUIRED

UNCLASSIFIED

28
UNCLASSIFIED

Table 14: Deploy Phase Activities

Activities Description Inputs Outputs Tool Dependency
Artifact download Download newly release artifacts from the artifact

repository
Artifact download
request

Requested
artifacts

Artifact repository

Infrastructure
provisioning automation

Infrastructure systems auto provisioning (such as
software defined networking, firewalls, DNS, auditing
and logging system, user/group permissions, etc.)

Infrastructure
configuration
scripts / recipes /
manifests /
playbooks

Provisioned and
configured
infrastructure

Configuration
automation tools;
IaC

Create linked clone of
VM master image

Instantiate VM by creating a link clone of parent VM
with master image

VM parent
New VM instance
parameters

New VM instance Virtualization
Manager

Post-deployment
security scan

System and infrastructure security scan Access to system
components and
infrastructure
components

Security
vulnerability
findings

Security
compliance tool

Post-deployment
checkout

Run automated test to make sure the important
functions of system are working

Smoke test
scenarios and
test scripts

Test results Test scripts

Database installation Database software installation; Cluster or high
availability setup

Artifacts in the
repository;
data

Running
database system

Artifact repository;
Database
automation tool;
Data masking or
encryption tool if
needed

Database artifact
deployment

Database artifacts deployment and data loading Artifacts in the
repository;
data

Running
database system

Artifact repository;
Database
automation tool;
Data masking or
encryption tool if
needed

Operational Test and
Evaluation

Test and evaluation of system effectiveness, suitability,
and survivability to include cyber resilience by the
actual mission user base.

All application
artifacts, test
plans and
reports.

 Test management
tool to capture
operational data
to include
instrumentation
(as needed).

UNCLASSIFIED

29
UNCLASSIFIED

2.8 Operate Tools and Activities
Operate phase tools are used for system scaling, load balancing, and backup.

Load balancing monitors resource consumption and demand, and then distributes the
workloads across the system resources. Scaling helps dynamic resource allocation based on
demand. Consider the popularity of virtual machines and software containers in a CNCF
Certified Kubernetes cluster as deployment options, both support load balancing and scaling
capabilities. Kubernetes handles the load balancing and scaling at the software container level,
while the virtualization manager works at the VM level.

Application deployment must have proper load balancing and scaling policies configured. During
runtime, the management layer will continuously monitor the resources. If the configured
threshold is reached or exceeded (for example if memory or Central Processing Unit (CPU)
usage exceeds a pre-set threshold), then the system triggers the load balancing or scaling
action(s) automatically. Auto-scaling must be able to scale both up and down.

Operate phase tools and their related activities are listed in Table 15: Operate Phase Tools and
Table 16: Operate Phase Activities, respectively. It is understood that specific reference designs
will augment this list with their required and preferred tools for load balancing and scaling.

UNCLASSIFIED

30
UNCLASSIFIED

Table 15: Operate Phase Tools

Tool Features Benefits Inputs Outputs Baseline
Backup
management

Data backup
System components (VM or
container) snapshot

Improve failure
recovery

Access to the backup
source

Backup data
System VM or
container snapshot

REQUIRED

Operations
dashboard

Provide operators a visual view
of operations status, alerts, and
actions.

Improve
operations
management

All operational
monitoring status,
alerts, and
recommended actions

Dashboard display PREFERRED

Table 16: Operate Phase Activities

Activities Description Inputs Outputs
Tool

Dependency
Backup Data backup;

System backup
Access to backup system Backup data or image Backup management;

Database automation tool
Scale Scale manages

VMs/containers as a group.
The number of VMs in the
group can be dynamically
changed based on the
demand and policy.

Real-time demand and VM
performance measures
Scale policy (demand or Key
Performance Indicator
(KPI)threshold; minimum,
desired, and maximum
number of VMs/containers)

Optimized resource
allocation

VM management
capability on the hosting
environment;

Load balancing Load balancing equalizes the
resource utilization

Load balance policy
Real time traffic load and
VM/container performance
measures

Balanced resource
utilization

VM management
capability on the hosting
environment;

Feedback, including
Operational Test and
Evaluation (if/as
needed)

The Second Way: Feedback Technical feedback as to “is
the system built right” and
operational feedback as to
“was the right system built”

Updated requirements /
backlog

Various planning tools

UNCLASSIFIED

31
UNCLASSIFIED

2.9 Monitor Tools and Activities
In the monitor phase, tools are utilized to collect and assess key information about the use of
the application to discover trends and identify problem areas. Monitoring spans the underlying
hardware resources, network transport, applications / microservices, containers, interfaces,
normal and anomalous endpoint behavior, and security event log analysis.

NIST SP 800-137 defines “information security continuous monitoring (ISCM) as maintaining
ongoing awareness of information security, vulnerabilities, and threats to support organizational
risk management decisions.”1 It continuously inventories all system components, monitors the
performance and security of all components, and logs application and system events. Other
policy enforcement and miscellaneous considerations include:

• Policy enforcement, including ensuring hardening of CSP managed services as
measured against NIST SP 800-53.

• Policy enforcement, including ensuring compliance of COTS against STIGs.
• Zero Trust concepts, including bi-directional authentication, Software Defined Perimeter

(SDP), micro-segmentation with authenticated and authorized data flows, separation of
duties, and dynamic authorization to provide secure access from untrusted
environments.

• A logging agent on each resource to push logs to a centralized logging service. Log
analysis should be performed using a Security Information and Event Manager (SIEM) /
Security Orchestration Automation and Response (SOAR) capability.

Monitor phase tools and their related activities are listed in Table 17: Monitor Phase Tools and
Table 18: Monitor Phase Activities, respectively.

1 NIST, NIST SP 800-137, Information Security Continuous Monitoring (ISCM) for Federal Information
Systems and Organizations, 2011.

UNCLASSIFIED

32
UNCLASSIFIED

Table 17: Monitor Phase Tools

Tool Features Benefits Inputs Outputs Baseline
Compliance
Monitor

Monitor the state of
compliance of deployed cloud
resources and services
against NIST SP 800-53
controls

 REQUIRED

Compliance as
Code

Monitor the state of
compliance of deployed COTS
against STIGs

 PREFERRED

Logging Logging events for all user,
network, application, and data
activities

Assist troubleshooting the
issues.
Assist detection of
advanced persistent
threats and forensics.

All user, network,
application, and data
activities

Event logs REQUIRED

Log aggregator Filter log files for events of
interest (e.g., security), and
transform into canonical format

 Event Logs,
Database Logs,
Audit Logs,
Database Security
Audit logs

Aggregated,
filtered, formatted
event log

REQUIRED

Log promotion Filter log files for events of
interest (e.g., security), and
transform into canonical format
before pushing the logs to
DoD Common Security
Services

 Event logs,
database logs, audit
logs, security audit
logs

Aggregated,
filtered, formatted
event log record

REQUIRED

Log analysis Analyze and audit to detect
malicious threats / activity;
Automated alerting and
workflows for response
Forensics for damage
assessment. These are
typically SIEM and SOAR
tools.

 Logs

Alert messages,
emails, etc.
Remediation
report and log

REQUIRED

Log auditing Audit to ensure possession of
the logs and that aggregation
is performed correctly

 Logs

Audit Logs REQUIRED

UNCLASSIFIED

33
UNCLASSIFIED

Tool Features Benefits Inputs Outputs Baseline
Operations
monitoring

Report various performance
metrics such as resource
utilization rates, number of
concurrent user sessions, and
Input/Output (IO) rates;
Provide dashboards to display
performance;
Alert performance issues
Establish a baseline for
comparison

Improve operations
continuity
Identify the area to
improve
Better end-user
experience

Performance KPI
and Service Level
Agreement (SLA)

Performance
statistics
Performance
alerts

REQUIRED

InfoSec Continuous
Monitoring (ISCM)
Tool

Monitor network security
Monitor personnel activity
Monitor configuration changes
Perform periodical security
scan to all system components
Monitor the IT assets and
detect deviations from
security, fault tolerance,
performance best practices.
Monitor and analyze log files
Audit IT asset’s configuration
compliance
Detect and block malicious
code
Continuous security
vulnerability assessments and
scans
Provide browse, filter, search,
visualize, analysis capabilities
Generate findings,
assessments and
recommendations.
Provide recommendations
and/or tools for remediating
any non-compliant IT asset
and/or IT workload.

Detect unauthorized
personnel, connections,
devices, and software
Identify cybersecurity
vulnerability
Detect security and
compliance violation
Verify the effectiveness of
protective measures

IT asset
Network
Personnel activities
Known
vulnerabilities

Vulnerabilities
Incompliance
Findings,
assessments and
recommendations

REQUIRED

UNCLASSIFIED

34
UNCLASSIFIED

Tool Features Benefits Inputs Outputs Baseline
Cyber Threat
Intelligence
Subscription(s)

Varying set of tools, from actor
activity based detection, tech
stack, etc.

Helps with risked-based
decisions in a proactive
manner in lieu of
reactivity when new
vulnerabilities are
announced

Cyber threat
condition feeds

Recommend
changes in CSRP

PREFERRED

Alerting and
notification

Notify security teams and/or
administrators about detected
events.
Support automatic remediation
of high-priority time-critical
events.

Improve visibility of
system events
Reduce system downtime
Improve customer service

Aggregated filtered
logs from the Log
Aggregator,
vulnerability and
non-compliance
findings from
Information Security
Continuous
Monitoring,
recommendations
from Information
Security Continuous
Monitoring,
performance
statistics from
Operations
Monitoring, and
performance alerts
from Operations
Monitoring

Alert messages,
emails, etc.
Remediation
report
Issue ticket

REQUIRED

Database
monitoring tool

Baseline database
performance and database
traffic;
Detect anomalies

Improve database
operations continuity

Running database Logs;
Warnings and
alerts

PREFERRED
if using a
database

Database security
audit tool

Perform user access and data
access audit;
Detect anomalies from events
correlation;
Detect SQL injection;
Generate alert

Enhance database
security

Running database Audit logs;
Warnings and
alerts

REQUIRED if
using a
database

UNCLASSIFIED

35
UNCLASSIFIED

Table 18: Monitor Phase Activities

Activities Description Inputs Outputs Tool Dependencies
Compliance
Monitoring (resources
& services)

Monitor the state of compliance of
deployed cloud resources and services
against NIST SP 800-53 controls

 Compliance Monitor

Compliance
Monitoring (COTS)

Monitor the state of compliance of
deployed COTS against STIGs

 Compliance as Code

Logging Log system events All user, network,
application, and data
activities

Logs Logging

Log analysis Filter or aggregate logs;
Analyze and correlate logs

Logs Alerts and remediation report Log aggregator
Log analysis & auditing

Log auditing Ensure possession of the logs and that
aggregation is performed correctly

Logs Report Log aggregator
Log analysis & auditing

System performance
monitoring

Monitor system hardware, software,
database, and network performance;
Baselining system performance;
Detect anomalies

Running system Performance KPI measures;
Recommended actions;
Warnings or alerts

Operation monitoring
Issue tracking system;
Alerting and notification;
Operations dashboard

System Security
monitoring

Monitor security of all system
components
Security vulnerability assessment
System security compliance scan

Running system Vulnerabilities;
Incompliance
Findings; assessments and
recommendations;
Warnings and alerts.

ISCM;
Issue tracking system;
Alerting and notification;
Operations dashboard

Asset Inventory Inventory system IT assets IT assets Asset inventory Inventory Management;
System configuration
monitoring

System configuration (infrastructure
components and software) compliance
checking, analysis, and reporting

Running system
configuration;
Configuration
baseline

Compliance report;
Recommended actions;
Warnings and alerts

ISCM;
Issue tracking system;
Alerting and notification;
Operations dashboard

Database monitoring
and security auditing

Database performance and activities
monitoring and auditing

Database traffic,
event, and activities

Logs;
Warnings and alerts

Database monitoring
tool;
Database security audit
tool;
Issue tracking system;
Alerting and notification;
Operations dashboard

UNCLASSIFIED

36
UNCLASSIFIED

2.10 Configuration Management Tools and Activities Cross-Reference
Configuration management plays a key role in DevSecOps practices. Without configuration
management discipline, DevSecOps practices will not reach their full potential. CM ensures the
configuration of a software system’s infrastructure, software components, and functionalities are
known initially and well-controlled and understood throughout the entirety of the DevSecOps
lifecycle.

CM consists of three sets of activities:

• Configuration Identification: Identify the configuration items. This can be done manually
or with assistance from a discovery tool. The configuration items include infrastructure
components, COTS or open source software components used in the system,
documented software design, features, software code or scripts, artifacts, etc.

• Configuration Control: Control the changes of the configuration items. Each configuration
item has its own attributes, such as model number, version, configuration setup, license,
etc. The CMDB, source code repository, and artifact repository are tools to track and
control the changes. The source code repository is used primarily during development.
The other two are used in both development and operations.

• Configuration Verification and Audit: Verify and audit that the configuration items meet
the documented requirements and design. Configuration verification and audit are
control gates along a pipeline to control the go/no-go decision to the next phase.

These configuration management activities are represented in Table 19: Configuration
Management Activities Summary and Cross-Reference.

UNCLASSIFIED

37
UNCLASSIFIED

Table 19: Configuration Management Activities Summary and Cross-Reference

Activities Phase Activities Table
Reference Tool Dependencies Tool Table

Reference
Configuration management
planning

Plan Table 4 Team collaboration system;
Issue tracking system

Table 3

Configuration identification Plan Table 4 CMDB Table 3
Design review Plan Table 4 Team collaboration system Table 3
Documentation version control Plan Table 4 Team collaboration system Table 3
Code review Develop Table 6 Code quality review tool Table 5
Code Commit Develop Table 6 Source code repository Table 5
Store artifacts Build Table 8 Artifact repository Table 7
Build phase configuration control
and audit

Build Table 8 Team collaboration system;
Issue tracking system

Table 3

Test phase configuration control
and audit

Test Table 10 Team collaboration system;
Issue tracking system

Table 3

Infrastructure provisioning
automation

Deploy Table 14 Configuration automation tool Table 13

Post-deployment security scan Deploy Table 14 Security compliance tool Table 9

Post-deployment checkout Deploy Table 14 Test scripts

Asset inventory Monitor Table 18 Asset inventory tool Table 17

System performance monitoring Monitor Table 18 Operation monitoring
Issue tracking system; Alerting and notification;
Operations dashboard

Table 3
Table 15
Table 17

System configuration monitoring Monitor Table 18 ISCM;
Issue tracking system; Alerting and notification;
Operations dashboard

Table 3
Table 15
Table 17

	1 Introduction
	1.1 Audience and Scope

	2 DevSecOps Tools and Activities
	2.1 Security Tools & Activities Cross Reference
	2.2 Plan Tools and Activities
	2.3 Develop Tools and Activities
	2.4 Build Tools and Activities
	2.5 Test Tools and Activities
	2.6 Release & Deliver Tools and Activities
	2.7 Deploy Tools and Activities
	2.7.1 Virtual Machine Deployment
	2.7.2 Container Deployment

	2.8 Operate Tools and Activities
	2.9 Monitor Tools and Activities
	2.10 Configuration Management Tools and Activities Cross-Reference

Accessibility Report

		Filename:

		N-120 min-DevSecOps Fundamentals Guidebook-DevSecOps Tools and Activities_DoD-CIO_20211019.pdf

		Report created by:

		Marilyn Anderson, Section 508 Policy Compliance

		Organization:

		DOD CIO

 [Personal and organization information from the Preferences > Identity dialog.]

Summary

The checker found no problems in this document.

		Needs manual check: 0

		Passed manually: 2

		Failed manually: 0

		Skipped: 4

		Passed: 26

		Failed: 0

Detailed Report

		Document

		Rule Name		Status		Description

		Accessibility permission flag		Passed		Accessibility permission flag must be set

		Image-only PDF		Passed		Document is not image-only PDF

		Tagged PDF		Passed		Document is tagged PDF

		Logical Reading Order		Passed manually		Document structure provides a logical reading order

		Primary language		Passed		Text language is specified

		Title		Passed		Document title is showing in title bar

		Bookmarks		Passed		Bookmarks are present in large documents

		Color contrast		Passed manually		Document has appropriate color contrast

		Page Content

		Rule Name		Status		Description

		Tagged content		Skipped		All page content is tagged

		Tagged annotations		Skipped		All annotations are tagged

		Tab order		Passed		Tab order is consistent with structure order

		Character encoding		Passed		Reliable character encoding is provided

		Tagged multimedia		Passed		All multimedia objects are tagged

		Screen flicker		Passed		Page will not cause screen flicker

		Scripts		Passed		No inaccessible scripts

		Timed responses		Passed		Page does not require timed responses

		Navigation links		Passed		Navigation links are not repetitive

		Forms

		Rule Name		Status		Description

		Tagged form fields		Passed		All form fields are tagged

		Field descriptions		Passed		All form fields have description

		Alternate Text

		Rule Name		Status		Description

		Figures alternate text		Passed		Figures require alternate text

		Nested alternate text		Passed		Alternate text that will never be read

		Associated with content		Passed		Alternate text must be associated with some content

		Hides annotation		Passed		Alternate text should not hide annotation

		Other elements alternate text		Passed		Other elements that require alternate text

		Tables

		Rule Name		Status		Description

		Rows		Passed		TR must be a child of Table, THead, TBody, or TFoot

		TH and TD		Passed		TH and TD must be children of TR

		Headers		Skipped		Tables should have headers

		Regularity		Passed		Tables must contain the same number of columns in each row and rows in each column

		Summary		Skipped		Tables must have a summary

		Lists

		Rule Name		Status		Description

		List items		Passed		LI must be a child of L

		Lbl and LBody		Passed		Lbl and LBody must be children of LI

		Headings

		Rule Name		Status		Description

		Appropriate nesting		Passed		Appropriate nesting

Back to Top

