
UNCLASSIFIED

UNCLASSIFIED

Cloud Security Playbook

Volume 2

February 11, 2025

Version 1.0

DISTRIBUTION STATEMENT A. Approved for public release: distribution is unlimited.

HanesKL
Cleared

UNCLASSIFIED

UNCLASSIFIED

ii

Approved By

Charles L. Martin

Cybersecurity Lead

Cloud and Software Modernization Directorate

Department of Defense Office of the Chief

Information Officer-Information Enterprise

Date

George Lamb

Director

Cloud and Software Modernization Directorate

DoD CIO, DCIO-Information Enterprise

Date

February 21, 2025

February 21, 2025

UNCLASSIFIED

UNCLASSIFIED

iii

Trademark Information

Names, products, and services referenced within this document may be the trade names,
trademarks, or service marks of their respective owners. References to commercial
vendors and their products or services are provided strictly as a convenience to our
readers, and do not constitute or imply endorsement by the Department of any non-
Federal entity, event, product, service, or enterprise.

UNCLASSIFIED

UNCLASSIFIED

iv

Table of Contents

Introduction ... 7

Audience .. 7

Purpose .. 7

Play Reading Order .. 7

Play 19. Secure Containers and Microservices .. 8

Microservices .. 8

Containers .. 9

Poisoned Containers .. 10

Hardening Containers .. 10

Kubernetes ... 10

Sidecar Security Container (SSC) .. 11

Service Mesh ... 13

Ambient Mesh ... 14

Actions ... 14

Actions from NIST 800-190 ... 15

Avoiding Poisoned Containers ... 16

Play 20. Defend DevSecOps Pipelines ... 18

Key Terms ... 19

Pipeline Threats .. 19

Top Ten Pipeline Risks and Mitigations .. 20

Continuous Authorization to Operate .. 21

Actions ... 21

Zero Trust Mitigation ... 21

Authentication and Access Mitigations .. 21

Development Environment Mitigations .. 22

Development Process Mitigations ... 22

Play 21. Mitigate Third Party Risk ... 24

Secure Software Supply Chain ... 24

UNCLASSIFIED

UNCLASSIFIED

v

Actions ... 25

Play 22. Move Towards Zero Trust (ZT) ... 26

Actions ... 27

Play 23. Secure Artificial Intelligence (AI) Systems ... 28

Actions ... 29

Secure the Deployment Environment .. 29

Continuously Protect the AI System ... 29

Secure AI Operation and Maintenance ... 29

CSP-Specific Actions for AI ... 29

Play 24. Secure Application Programming Interfaces ... 30

Actions ... 31

Conclusion .. 32

References .. 33

Appendix A. Glossary ... 37

Appendix B. Acronyms .. 40

UNCLASSIFIED

UNCLASSIFIED

vi

List of Figures

Figure 1. Pod with Sidecar Container .. 12

Figure 2. Service Mesh ... 13

Figure 3. DevSecOps Lifecycle ... 18

Figure 4. Threats to the Pipeline ... 20

Figure 5. DoD Zero Trust Pillars .. 26

List of Tables

Table 1. Top 10 CI/CD Security Risks with Mitigations .. 20

UNCLASSIFIED

UNCLASSIFIED

7

Introduction
This is the second volume of the Cloud Security Playbook. The first volume provides some
rationale for why cloud security is so important. It includes 18 plays and several
appendices.

Volume 2 discusses some more sophisticated plays that do not apply to all systems
hosted in a cloud. For example, this volume discusses containers, microservices,
defending DevSecOps pipelines, and securing Artificial Intelligence (AI) systems.

Audience

The Cloud Security Playbook is intended for Mission Owners (MOs), Software Development
Managers, developers, and organizations that are developing software (or who have
acquired software) to host in a cloud, including those using cloud native services.

Purpose

This document was created to make it easy to improve the cybersecurity of applications
hosted in a cloud.

Like Volume 1, this volume also points to useful documents so that MOs know where to
find more details.

There are many threats and vulnerabilities related to cloud security. Each play in this
playbook contains an actions section that describes several actions that mission owners
should take to mitigate these cloud vulnerabilities to reduce cybersecurity risk to their
systems and missions.

Play Reading Order

This is the second volume of the Cloud Security Playbook. Readers should start with the
first volume before moving to this one.

Plays may be read in any order, but some plays use concepts described in earlier plays. It
is not necessary to implement the plays in order. Indeed, the implementation of many
plays may be accomplished in parallel. However, some plays rely on earlier plays having
been accomplished.

UNCLASSIFIED

UNCLASSIFIED

8

Play 19. Secure Containers and Microservices
This play discusses two concepts that work well together: microservices and containers.

Microservices

Microservices, and using a microservice architecture, is an approach to application
development in which a large application is built as a collection of modular, loosely
coupled components or services. A microservices architecture uses fine-grained services,
and lightweight protocols. Each microservice typically runs inside a software container.

The design of a microservice is based on the following drivers from NIST SP 800-204,
Security Strategies for Microservices-based Application Systems [1].

• Each microservice must be managed, replicated, scaled, upgraded, and deployed
independently of other microservices.

• Each microservice must have a single function and operate in a bounded context
(i.e., have limited responsibility and dependence on other services).

• All microservices should be designed for constant failure and recovery and must
therefore be as stateless as possible.

• Reuse existing hardened services (e.g., databases, caches, directories) for state
management.

• Some benefits of decomposing an application into different smaller microservices
include:

o Improved modularity.
o Makes the application easier to understand, develop, and test, since each

component is smaller.
o Makes the application more resilient to architecture erosion.
o Parallelizes development by enabling small autonomous teams to develop,

deploy and scale their respective services independently.

One benefit of a microservices approach is that each microservice can evolve
independently from other microservices. Other benefits include faster scaling on demand,
upgrades that do not impact users, more precise cyber hardening at a per-service level,
graceful degradation, and improved support to quickly recover from failure.

For more information on securing microservices, see NIST SP 800-204A, Building Secure
Microservices-based Applications Using Service-Mesh Architecture [2], and NIST SP 800-
204, Security Strategies for Microservices-based Application Systems [1].

UNCLASSIFIED

UNCLASSIFIED

9

Containers

A modular open system approach (MOSA) is an acquisition and design strategy consisting
of a technical architecture that adopts open standards and supports a modular, loosely
coupled and highly cohesive system structure. U.S. Code Title 10 Section 2446a, and DoD
Instruction 5000.02 require MOSA. A modern software architecture predicated upon
microservices, and software containers meets MOSA requirements.

A container is a light-weight, standalone, executable package of software that includes
everything needed to run a microservice or mission service except the Operating System
(OS); it includes compiled code, runtime (e.g., the Jave Runtime Environment), system
tools, system libraries and configuration settings. Containers run in isolated processes
from one another, so several containers can run in the same host OS without conflicting
with one another.

Containers are lighter weight than Virtual Machine (VM) Images, and they start much more
rapidly than a VM, since the operating system is already running. Thus, they can scale up
and down faster than a VM-based architecture.

Containers can readily move from one cloud or local environment to another. Containers
that do not use any cloud services should move easily between CSPs. However, if the
software inside the container uses any cloud services, that container will not move easily
between CSPs, since the code in the container cannot run in an environment that lacks the
cloud services it requires. Such containers must be refactored for the new CSP.

All containers must be Open Container Initiative (OCI) compliant.

A container image is a reusable, shareable file used to create containers. A container is a
runtime instance of a container image.

Container images should be immutable. That is, they should be built, then stored in an
artifact repository and not modified. When they are deployed in an environment
(development, test, staging, production, etc.), the container image is deployed as it was
built, without modification, though it may accept parameters (e.g., IP addresses) on
installation. The container image should not be modified. If there is an issue, a change
request is submitted, the container is re-built and re-tested, and if it passes appropriate
checks or control gates, this new immutable container can then be deployed.

Note that immutable containers may be stateless or stateful. Stateless containers allow
automatic horizontal scaling in a cloud, so they are preferred when possible, and are often
used in the middle-tier of a web application. However, some software is inherently stateful
(e.g., a database), so some immutable containers will be stateful.

UNCLASSIFIED

UNCLASSIFIED

10

Poisoned Containers

A container image can be poisoned. This can happen when an attacker embeds malicious
software inside a container image, for example, for a publicly available open-source
container. The Poisoned Containers part of the Actions in this play offer suggestions to
help mitigate this risk. In addition, a secure software supply chain helps; for more on that,
see Play 20 and Play 21.

Hardening Containers

Containers should be hardened. Generally, a container is built and tested for cybersecurity
vulnerabilities. If some are found, they are either fixed or mitigated with the mitigation
described in a Plan of Action and Milestones (POA&M). Once it meets the risk threshold of
acceptable risk, it is considered hardened. Using hardened immutable containers
improves cybersecurity.

DISA’s Container Hardening Process Guide, 2022 [3] includes a set of cybersecurity
requirements for DoD hardened containers that include the following.

 Comply with initial and ongoing DOD Cybersecurity accreditation regulations/
frameworks.

o If a Security Technical Implementation Guide (STIG) is available, the
container base OS image must be STIGed.

o NIST 800-53v5 moderate controls plus FedRAMP+ IL 6 controls.
o Risk Management Framework (RMF) process and required documentation.
o Containers must be compliant with DISA STIGs that exist for container

technology and consistent with NIST SP 800-190 [4].
 Generate and automate necessary documentation for Risk Management.

o RMF Controls
o Data Flows

 Enable TLS on all PaaS tools that have a user interface or send data. Redirect HTTP
and use Federal Information Processing Standard (FIPS) 140.2 encryption.

 Whenever possible, prohibit processes and containers from running as root.

Kubernetes

Proper deployment and management of containers also requires a container orchestrator.
A container orchestrator performs tasks such as checking for new versions of containers,
deploying the containers into the appropriate environment (development, test, or
production), self-healing, rolling updates, security checks, and performing post-
deployment validation tests.

UNCLASSIFIED

UNCLASSIFIED

11

Kubernetes (K8s) is an open-source system for automating deployment, scaling, and
management of containerized applications. When using K8s, the DoD requires Cloud
Native Computing Foundation (CNCF) certified Kubernetes, as specified in the DoD
Enterprise DevSecOps Reference Design: CNCF Kubernetes [5]; for brevity, this playbook
refers to CNCF certified Kubernetes as CNCF K8s.

The key benefits of adopting Kubernetes include:

• Multimodal Environment: code runs equally well in a multitude of compute
environments, benefitting from the K8s API abstraction.

• Resiliency: self-healing of unstable or crashed containers.
• Adaptability: containerized microservices create composable ecosystems.
• Automation: fundamental support for a GitOps model and IaC speeds process and

feedback loops.
• Scalability: application elasticity to appropriately scale and match service demand.

Sidecar Security Container (SSC)

K8s packages containers into pods. Each pod may contain several containers, and
containers within pods can share disk and network resources. A sidecar container is a
container used to extend or enhance the functionality of an application container without
strong coupling between two.

The use of pods makes it possible to create a Sidecar Security Container (SSC) and
automatically deploy an instance of it in each pod alongside each application container, as
depicted in the figure below. This sidecar security container helps to build security into the
application without requiring any action from the application development team.

UNCLASSIFIED

UNCLASSIFIED

12

Figure 1. Pod with Sidecar Container

There are two key benefits to the SSC approach: first, application container developers do
not need to modify it, and second, decoupling it from the main container makes it easy to
rapidly deploy updates to the security sidecar without any need to rebuild the main
container. So, the SSC can evolve independently of the application container. The security
sidecar can include several services, including the following.

• Host Intrusion Detection System (HIDS) agent for signature-based continuous
scanning using Common Vulnerabilities and Exposures (CVEs)

• HIDS agent for Runtime behavior analysis
• Centralized logging and telemetry that includes Extract, Transform, and Load (ETL)

capabilities to normalize log data
• Robust east/west network traffic management (whitelisting)
• Role-Based Access Control
• Container policy enforcement
• Automated STIG compliance that complies with the Security Content Automation

Protocol (SCAP).
• Service mesh proxy to tie into the service mesh described in the next subsection.

DoD sidecar containers are validated operationally in a threat-representative operational
environment to verify that they provide the security services as designed.

For more on the SSC approach, see the DoD Enterprise DevSecOps Reference Design:
CNCF Kubernetes [5]. Some components have developed an SSC, for example, the Air
Force’s Platform One has developed an SSC.

UNCLASSIFIED

UNCLASSIFIED

13

Service Mesh

A service mesh is “a dedicated infrastructure layer with a set of deployed infrastructure
functions that facilitate service-to-service communication through service discovery,
routing and internal load balancing, traffic configuration, encryption, authentication and
authorization, metrics, and monitoring. It provides the capability to declaratively define
network behavior, microservice instance identity, and traffic flow through policy in an
environment of changing network topology due to service instances coming and going
offline and continuously being relocated.” – NIST SP 800-204A, Building Secure
Microservices-based Applications Using Service-Mesh Architecture [2].

A service mesh can create a network of deployed services including load balancing,
service discovery, service-to-service authentication and authorization, encryption,
monitoring, and support for the circuit breaker pattern. The circuit breaker pattern
identifies instances having trouble (e.g., slow to respond to requests), isolates them by
stopping further requests from going to them, monitors them, and only routes new
requests to them if the instance recovers.

If an application uses a microservice architecture, it should use a service mesh.

For more information, see NIST SP 800-204A, Building Secure Microservices-based
Applications Using Service-Mesh Architecture [2], and NIST SP 800-204, Security Strategies
for Microservices-based Application Systems [1].

Part of a service mesh implementation includes providing a sidecar container proxy for
each service instance. The mesh routes service requests between the application’s
microservices through these proxies. These sidecar container service mesh proxies handle
East-West (inter-service) traffic, logging and some security controls. Figure 2 depicts an
example of a service mesh for an application with several microservices. A service mesh
proxy is part of the SSC discussed in the previous section.

Figure 2. Service Mesh

UNCLASSIFIED

UNCLASSIFIED

14

As mentioned above, one aspect of a service mesh is to abstract inter-service
communication (East-West traffic) from an application’s microservices. This allows
developers to focus on adding new mission features, while the operations team operates
the application and manages the service mesh.

Microservice based applications that lack a service mesh must add code to each
microservice to handle inter-service communication, thus causing developers to spend
less time on mission goals. In addition, it is difficult to debug communications issues,
since developers must look at the communications code in each affected service. With a
service mesh, that logic is in one layer, making it easier to track down issues. A service
mesh includes distributed logging and distributed tracing. It also captures inter-service
communication performance metrics, which teams can use to improve application
performance.

CNCF Kubernetes offers transport layer (Open Systems Interconnection (OSI) layer 4) load
balancing. But a service mesh includes application layer (OSI layer 7) load balancing,
which offers more advanced capabilities for load balancing, zero trust, access control, and
routing.

Ambient Mesh

A recent alternative to using sidecars is an ambient mesh, or an ambient mode for a
service mesh. This approach does not require a sidecar container. Compared to a sidecar
approach, an ambient mesh moves the service mesh proxy from the sidecar to the
Kubernetes node for mutual Transport Layer Security (mTLS) and identity. Since each node
can run several pods, this approach “reduces the number of proxies to manage, slashing
service mesh costs by reducing the compute and memory requirements per node.”1

Consider an ambient mesh as an alternative to using a sidecar security container.

Actions

 Research and understand the benefits of a microservices architecture.
 Only adopt CNCF Certified Kubernetes to ensure software conformance of required

APIs.
 Leverage a secure repository for hardened containers and other software artifacts.
 Use or create a sidecar security container or use an ambient mesh.

1 Source: Ambient Mode - Simplify Operations of the Istio Service Mesh (solo.io).

https://www.solo.io/topics/istio/ambient-mode/

UNCLASSIFIED

UNCLASSIFIED

15

 If using a sidecar, always inject the Sidecar Container Security Stack to maximize
runtime security.

 If using microservices, adopt a service mesh or ambient mesh to further secure
east-west network traffic.

 If using microservices, be aware of recommendations from these sources:
o NIST SP 800-204A, Building Secure Microservices-based Applications Using

Service-Mesh Architecture [2], and
o NIST SP 800-204, Security Strategies for Microservices-based Application

Systems [1].
 Package software in the form of containers.
 All containers must be OCI compliant.
 Scan containers for cybersecurity issues.
 Harden containers to improve cybersecurity.
 Use immutable containers.
 Create an artifact repository for hardened containers and their assessments.
 Implement the use of CNCF Kubernetes to orchestrate and manage containers.
 Use Kubernetes to deploy the sidecar security container with each container it

deploys.
 Remember that while the container package moves easily between environments,

containers that use cloud services will not run in other environments that lack those
services.

Actions from NIST 800-190

NIST Special Publication 800-190, Application Container Security Guide [4] offers guidance
on securing containers. Some of that guidance is summarized here, but more can be found
in the original source.

 Use container-specific host OSs instead of general-purpose ones to reduce the
attack surface.

 Only group containers with the same purpose, sensitivity, and threat posture on a
single host OS kernel to allow for additional defense in depth.

 Adopt container-specific vulnerability management tools and processes for
container images to prevent compromises.

 Consider using hardware-based countermeasures to provide a basis for trusted
computing.

UNCLASSIFIED

UNCLASSIFIED

16

 Use container-aware runtime defense tools. Deploy and use a dedicated container
security solution capable of preventing, detecting, and responding to threats aimed
at containers during runtime.

 Avoid embedded clear text secrets. Secrets should be stored outside container
images and provided dynamically at runtime as needed. Container orchestrators,
such as Kubernetes, include native secrets management.

 Use only trusted container images. To mitigate these risks, organizations should
take a multilayered approach that includes:

o The capability to centrally control what container images and container
registries are trusted in their environment.

o Discrete identification of each image by cryptographic signature, using a
NIST-validated implementation.

o Enforcement to ensure that all hosts in the environment only run images
from these approved lists.

o Validation of image signatures before image execution to ensure images are
from trusted sources and have not been tampered with.

o Ongoing monitoring and maintenance of these repositories to ensure images
within them are maintained and updated as vulnerabilities and configuration
requirements change.

 Organizations should control the egress network traffic sent by containers.
Specifically, app-aware tools should provide the following capabilities:

o Automated determination of proper container networking surfaces, including
both inbound ports and process-port bindings;

o Detection of traffic flows both between containers and other network
entities, over both ‘on the wire’ traffic and encapsulated traffic; and

o Detection of network anomalies, such as unexpected traffic flows within the
organization’s network, port scanning, or outbound access to potentially
dangerous destinations.

Avoiding Poisoned Containers

Mitigations for poisoned containers from [4] include:

 Ensure that only vetted, tested, validated, and digitally signed images are allowed to
be uploaded to an organization’s registries.

 Ensure that only trusted images are allowed to run, which will prevent images from
external, unvetted sources from being used.

 Automatically scan images for vulnerabilities and malware, which may detect
malicious code such as rootkits embedded within an image.

UNCLASSIFIED

UNCLASSIFIED

17

 Implement runtime controls that limit the container's ability to abuse resources,
escalate privileges, and run executables.

 Use container-level network segmentation to limit the “blast radius” of what the
poisoned image might do.

 Validate that container runtimes follow least-privilege and least-access principles.
 Build a threat profile of the container's runtime. This includes, but is not limited to,

processes, network calls, and filesystem changes.
 Validate the integrity of images before runtime by leveraging hashes and digital

signatures.
 Restrict images from being run based on rules establishing acceptable vulnerability

severity levels.

UNCLASSIFIED

UNCLASSIFIED

18

Play 20. Defend DevSecOps Pipelines
Attacks on the software supply chain have become more common. Also, many
organizations that either develop or contract development of software have moved to using
a DevSecOps approach. Such an approach is also popular at most top-tier software
companies. DevSecOps is an evolution of DevOps, combining development, security and
operations. Typically, software produced with DevSecOps processes is developed using a
Continuous Integration (CI) / Continuous Delivery (CD) pipeline, sometimes called a
DevSecOps pipeline to emphasize the security aspect. This pipeline is a series of tools and
processes that are automated and orchestrated to produce software, as it passes through
various phases in the DevSecOps lifecycle, as depicted in Figure 3.

Figure 3. DevSecOps Lifecycle

The phases are iterated as much as necessary. For example, a team may perform a dozen
iterations of Plan-Develop-Build-Test before moving to the Deliver phase. The pipeline
tools along with various environments (e.g., Development, Test, Staging and Production)
are typically deployed in a cloud, which is why they warrant mention in this Playbook.

Security must be built-in to each phase. For example, the Develop phase should include
tools integrated into the development environment that check for security coding errors as
the code is written, while the Test phase must include both static and dynamic application
security testing. Control gates determine whether a piece of software passes to the next
phase or not. These gates can ensure that the software passes various security tests at
appropriate points in the process.

Furthermore, the pipeline should include automatic creation of a Software Bill of Materials
(SBOM) and perform Software Composition Analysis (SCA) to help mitigate risk to the
software supply chain. To learn more about DevSecOps, see the DoD CIO Library, which
has several papers on that topic. Start with the DoD Enterprise DevSecOps Fundamentals
[6].

https://dodcio.defense.gov/Library/

UNCLASSIFIED

UNCLASSIFIED

19

Key Terms

Here are definitions of a few key terms related to DevSecOps in the DoD.

DevSecOps pipeline – “a collection of DevSecOps tools, upon which the DevSecOps
process workflows can be created and executed.” – DoD Enterprise DevSecOps
Fundamentals [6].

DevSecOps Platform (DSOP) – “the set of tools and automation that enables a software
factory. It includes the ability to create DevSecOps pipelines with control gates, and to
deploy software into development, test, and staging/pre-production environments. It may
also deploy into production, depending on the production environment.” – DevSecOps
Continuous Authorization Implementation Guide [7].

DSOPs are typically hosted in a cloud.

Software Factory – “a DSOP combined with the people and processes that support the
DSOP, as well as a hosting environment such as a cloud; it includes at least development,
test and staging/pre-production environments, and it may include a production
environment, as well as other environments such as integration.” – [7].

The Software Factory should be based on one of the DoD Enterprise DevSecOps Reference
Designs (RD) to be found in the DoD CIO Library.

Pipeline Threats

Since these DevSecOps pipelines produce multiple applications and services, so they are
prime targets for Malicious Cyber Actors (MCAs) [8].

“These pipelines make valuable targets for Malicious Cyber Actors (MCAs) as a
successful compromise of a CI/CD pipeline could impact both infrastructure and
applications. Organizations should follow best practices in securing their
organization’s CI/CD pipelines, such as strong IAM practices, keeping tools up to
date, auditing logs, implementing security scanning, and properly handling
secrets.” – NSA [8].

“The CI/CD pipeline is a distinct and separate attack surface from other segments
of the software supply chain. MCAs can multiply impacts severalfold by exploiting
the source of software deployed to multiple operational environments.” –
Defending Continuous Integration/Continuous Delivery (CI/CD) Environments, NSA,
Cybersecurity and Infrastructure Security Agency, 2023, [9].

The next figure, from [9], illustrates some threats to a CI/CD pipeline.

https://dodcio.defense.gov/Library/

UNCLASSIFIED

UNCLASSIFIED

20

Figure 4. Threats to the Pipeline

Top Ten Pipeline Risks and Mitigations

Another good source of information is the Open Web Application Security Project®
(OWASP) Top 10 CI/CD Security Risks [10]. That is the source for the next table of top 10
CI/CD security risks with mitigations.

Table 1. Top 10 CI/CD Security Risks with Mitigations

Risk Evidence of Mitigation

Insufficient Flow Control
Mechanisms

Evidence of properly configured pipeline control gates.
Evidence of use of GitOps pull, but no push.

Inadequate Identity and
Access Management

DSOP and processes verify proper IdAM, including use of
signed artifacts and GitOps pull.

Dependency Chain
Abuse

Secure the chain via DSOP, processes and training

Poisoned Pipeline
Execution (PPE)

Use GitOps. Pull, do not allow a push

Insufficient Pipeline-
Based Access Controls
(PBAC)

Different Impact Levels (IL) require separate environments;
limit permissions; revert execution node to pristine state after
each execution; separate context for installation scripts

Insufficient Credential
Hygiene

Verify proper credential processes are in place.
Verify that team is properly trained on credentials.

UNCLASSIFIED

UNCLASSIFIED

21

Risk Evidence of Mitigation

Insecure System
Configuration

Use IaC and GitOps; least privilege principle

Ungoverned Usage of
3rd Party Services

Governance processes in place, Visibility over ongoing usage

Improper Artifact
Integrity Validation

Code signing with external authority, artifact verification
automation, configuration drift detection automation

Insufficient Logging and
Visibility

Verify that DSOP provides logging and log analysis tools, as
well as a dashboard to display them

Continuous Authorization to Operate

In the DoD, the gold standard for pipeline security is obtaining a Continuous Authorization
to Operate (cATO) for the software factory that includes the pipeline (see the Glossary for a
definition). Developing software in a DoD Software Factory with a Continuous
Authorization to Operate (cATO) is normally the fastest way to achieve authorization to
deploy an application into production in a cloud.

More on cATO can be found in the DoD CIO Library, including a set of evaluation criteria
that help to mitigate risks to the pipeline. Start with the DevSecOps Continuous
Authorization Implementation Guide [7] to learn about the concept, then peruse the
DevSecOps Continuous Authorization to Operate (cATO) Evaluation Criteria [11], which
includes many details on how to secure the pipeline and prepare a submission for a cATO.

Actions

Zero Trust Mitigation

 Use a zero-trust approach. Assume no user, endpoint device or process is fully
trusted.

The next set of mitigations to employ come from [9].

Authentication and Access Mitigations

 Use encryption with a FIPS 140-2 approved algorithm.

Using a DoD Software Factory with a Continuous Authorization to

Operate (cATO) is normally the fastest way to achieve authorization

https://dodcio.defense.gov/Library/

UNCLASSIFIED

UNCLASSIFIED

22

 Minimize use of long-term credentials. To authenticate people, use identity
federation and phishing-resistant security tokens to obtain temporary SSH and
other keys.

 Implement secure code signing to establish trust within the pipeline. See Security
Considerations for Code Signing, NIST [12], which contains several
recommendations.

 Use two-person rules for code, at least one other developer must approve code (or
IaC, or Policy as Code) before it can be promoted to the main branch. Some
organizations may require more than one reviewer.

 Implement least-privilege policies for access to the pipeline. Developers should
only have access to components they need for their tasks, not the entire
environment.

 Secure user accounts

 Secure secrets

 “Implement network segmentation and traffic filtering Implement and ensure
robust network segmentation between networks and functions to reduce the
spread of malware and limit access from other parts of the network that do not
need access. Define a demilitarized zone that eliminates unregulated
communication between networks. Filter network traffic to prohibit ingress and
egress communications with known malicious IP addresses”

Development Environment Mitigations

 Keep all software up to date and patched, including operating systems and pipeline
tools.

 Remove unnecessary applications.

 Implement Endpoint Detection and Response (EDR) tools.

Development Process Mitigations

 Integrate security testing into the pipeline, including Static Application Security
Testing (SAST) and Dynamic Application Security Testing (DAST).

 Pull artifacts such as containers and libraries only from a trusted artifact repository
in which the artifacts have been scanned.

 Analyze committed code for security vulnerabilities.

UNCLASSIFIED

UNCLASSIFIED

23

 Remove any temporary resources, such as those created in testing.

 Keep audit logs that include who committed, reviewed and deployed, what they
deployed, when and where.

 Implement the generation of a Software Bill of Materials (SBOM) and perform
software composition analysis (SCA). Do this both for the pipeline tools and the
software moving through the pipeline. The SBOM must be in a standard SBOM
format and must include all third-party and open-source components. The SBOM
must be compared with known vulnerabilities to determine if any components
increase the risk beyond acceptable thresholds.

 Build a resilient pipeline and test its resiliency.

UNCLASSIFIED

UNCLASSIFIED

24

Play 21. Mitigate Third Party Risk
“Recent cyberattacks such as those executed against SolarWinds and its
customers and exploits that take advantage of vulnerabilities such as Log4j,
highlight weaknesses within software supply chains, an issue which spans both
commercial and open-source software and impacts both private and Government
enterprises. Accordingly, there is an increased need for software supply chain
security awareness and cognizance regarding the potential for software supply
chains to be weaponized by nation state adversaries using similar tactics,
techniques, and procedures (TTPs).” – Securing the Software Supply Chain [13].

Here are some examples of common threats that can occur “during the software
development lifecycle:

1. Adversary intentionally injecting malicious code or a developer unintentionally
including vulnerable code within a product.

2. Incorporating vulnerable third-party source code or binaries within a product either
knowingly or unknowingly.

3. Exploiting weaknesses within the build process used to inject malicious software
within a component of a product.

4. Modifying a product within the delivery mechanism, resulting in injection of
malicious software within the original package, update, or upgrade bundle
deployed by the customer.” – [13].

Secure Software Supply Chain

To mitigate third party risk, secure the software supply chain. As discussed in Play 20, the
pipeline should include automatic creation of a Software Bill of Materials (SBOM) and
perform Software Composition Analysis (SCA) to help mitigate risk to the software supply
chain. Consider using a DoD software factory with a cATO, as this enables pipelines that
incorporate features to help secure the software supply chain.

The Enduring Security Framework (ESF) is a public-private cross-sector group that
addresses risks to critical infrastructure and National Security Systems. “ESF is chartered
by the Department of Defense, Department of Homeland Security (DHS), Office of the
Director of National Intelligence (ODNI), and the Information Technology (IT),
Communications and Defense Industrial Base Sector Coordinating Councils. NSA serves
as the Executive Secretariat of ESF.”2

2 Source: https://www.nsa.gov/About/Cybersecurity-Collaboration-Center/Enduring-Security-Framework

https://www.nsa.gov/About/Cybersecurity-Collaboration-Center/Enduring-Security-Framework

UNCLASSIFIED

UNCLASSIFIED

25

The ESF has created several documents related to this play, particularly the following.

• Securing the Software Supply Chain: Recommended Practices Guide for
Developers, 2022 [13].

• Securing the Software Supply Chain: Recommended Practices Guide for
Customers, 2022 [14].

• Securing the Software Supply Chain: Recommended Practices for Managing Open-
Source Software and Software Bill of Materials, 2023 [15].

• Securing the Software Supply Chain: Recommended Practices for Software Bill of
Materials Consumption, 2023 [16].

Actions

 Secure the Software Supply Chain.

 Consider using a DoD software factory with a cATO.

 Enable automatic creation of a Software Bill of Materials (SBOM) for software
produced. The SBOM must be in a standard SBOM format and must include all
third-party and open-source components.

 The SBOM must be compared with known vulnerabilities to determine if any
components increase the risk beyond acceptable thresholds.

 Perform Software Composition Analysis (SCA) to help mitigate risk to the software
supply chain.

 Read the appropriate ESF documents.
o Securing the Software Supply Chain: Recommended Practices Guide for

Developers, 2022 [13].
o Securing the Software Supply Chain: Recommended Practices Guide for

Customers, 2022 [14].
o Securing the Software Supply Chain: Recommended Practices for Managing

Open-Source Software and Software Bill of Materials, 2023 [15].
o Securing the Software Supply Chain: Recommended Practices for Software

Bill of Materials Consumption, 2023 [16].

UNCLASSIFIED

UNCLASSIFIED

26

Play 22. Move Towards Zero Trust (ZT)
Zero Trust is “a security model, a set of system design principles, and a coordinated
cybersecurity and system management strategy based on an acknowledgement that
threats exist both inside and outside traditional network boundaries. Zero Trust repeatedly
questions the premise that users, devices, and network components should be implicitly
trusted based on their location within the network. Zero Trust embeds comprehensive
security monitoring; granular, dynamic, and risk-based access controls; and system
security automation in a coordinated manner throughout all aspects of the infrastructure
… to focus specifically on protecting critical assets (data) in real-time within a dynamic
threat environment. This data-centric security model allows the concept of least privileged
access to be applied for every access decision, where the answers to the questions of
who, what, when, where, and how are critical for appropriately allowing or denying access
to resources.” – Embracing a Zero Trust Security Model, NSA, Feb 2021, [17].

One DoD strategic objective from the Fulcrum Information Technology Advancement
Strategy, DoD CIO, June 2024 [18] is to “Implement ZT across DoD networks and compute
fabric: Secure networks and compute fabric with ZT to increase resiliency against threats
across the full range of conflict.”

The next figure is from the DoD Zero Trust Strategy, 2022 [19]; it illustrates the pillars of ZT.

Figure 5. DoD Zero Trust Pillars

A Zero Trust approach treats every user and device as untrusted, regardless of their
network location. It requires conditional access for every request for data or resources.

UNCLASSIFIED

UNCLASSIFIED

27

A complete discussion of how to implement Zero Trust is outside the scope of this
Playbook, but here are some resources to guide the transition to zero trust.

• DoD Zero Trust Strategy, 2022 [19]

• DoD Zero Trust Capability Execution Roadmap (COA1), DoD CIO, 2023 [20]

• DoD Zero Trust Reference Architecture, Version 2.0 July 2022, Defense Information
Systems Agency (DISA) and NSA, [21]

• Embracing a Zero Trust Security Model, NSA, Feb 2021, [17]

• https://zerotrust.cyber.gov/

• Zero Trust Maturity Model, CISA, 2023 [22]

• Advancing Zero Trust Maturity Throughout the User Pillar, NSA, 2023 [23]

• Cloud Security Technical Reference Architecture, CISA, the U.S. Digital Service, and
FedRAMP, 2022 [24]

• Special Publication 800-207: Zero Trust Architecture, National Institute of
Standards and Technology, 2020 [25].

Major CSPs are moving towards offering Zero Trust solutions. Some example resources
include: Microsoft Zero Trust, Microsoft Entra Suite, and Zero Trust on AWS.

Actions

 Read these DoD papers on ZT:

o DoD Zero Trust Strategy, 2022 [19]

o DoD Zero Trust Capability Execution Roadmap (COA1), DoD CIO, 2023 [20]

o DoD Zero Trust Reference Architecture, Version 2.0 July 2022, Defense
Information Systems Agency (DISA) and NSA, [21]

 Implement ZT for the mission application.
o Consider CSP-provided ZT solutions.

https://zerotrust.cyber.gov/
https://www.microsoft.com/en-us/security/business/zero-trust
https://www.microsoft.com/en-us/security/blog/2024/07/11/simplified-zero-trust-security-with-the-microsoft-entra-suite-and-unified-security-operations-platform-now-generally-available/
https://aws.amazon.com/security/zero-trust/

UNCLASSIFIED

UNCLASSIFIED

28

Play 23. Secure Artificial Intelligence (AI) Systems
Artificial Intelligence (AI) and Machine Learning (ML) systems have become popular. These
systems are most often developed and deployed in a cloud, due to the need for massive
compute power and storage. These systems are targets for malicious actors. Moreover,
there are new vulnerabilities associated with such systems.

“The rapid adoption, deployment, and use of AI capabilities can make them highly valuable
targets for malicious cyber actors. Actors, who have historically used data theft of
sensitive information and intellectual property to advance their interests, may seek to co-
opt deployed AI systems and apply them to malicious ends. Malicious actors targeting AI
systems may use attack vectors unique to AI systems, as well as standard techniques
used against traditional IT. Due to the large variety of attack vectors, defenses need to be
diverse and comprehensive. Advanced malicious actors often combine multiple vectors to
execute operations that are more complex. Such combinations can more effectively
penetrate layered defenses. Organizations should consider the following best practices to
secure the deployment environment, continuously protect the AI system, and securely
operate and maintain the AI system.” – Deploying AI Systems Securely, Ver. 1.0, NSA, 2024
[26].

“Securing AI systems requires us to protect the entire AI development lifecycle, an
extension of secure software development practices we have today in cybersecurity.
Specifically, we need to protect the training data, training frameworks, models, model
abilities, and the machine learning (ML) development operations lifecycle.” – NSA Artificial
Intelligence Security Center.

The NIST AI 100-1, Artificial Intelligence Risk Management Framework (AI RMF 1.0), 2023
[27] enumerates numerous AI-specific risks that are new or increased. Following are some
risks that relate to cybersecurity of AI systems.

• Difficulty in performing regular AI-based software testing, or determining what to
test, since AI systems are not subject to the same controls as traditional code
development.

• Privacy risk due to enhanced data aggregation capability for AI systems.
• Underdeveloped software testing standards and inability to document AI-based

practices to the standard expected of traditionally engineered software for all but
the simplest of cases.

• The data used for building an AI system may not be a true or appropriate
representation of the context or intended use of the AI system, and the ground truth
may either not exist or not be available. Additionally, harmful bias and other data

https://www.nsa.gov/AISC/
https://www.nsa.gov/AISC/

UNCLASSIFIED

UNCLASSIFIED

29

quality issues can affect AI system trustworthiness, which could lead to negative
impacts.

Actions

These actions are best practices for deploying secure and resilient AI systems from [26].
More information can be found there.

Secure the Deployment Environment

 Manage deployment environment governance.
 Ensure a robust deployment environment architecture.
 Harden deployment environment configurations.
 Protect deployment networks from threats.

Continuously Protect the AI System

 Validate the AI system before and during use.
 Secure exposed APIs.
 Actively monitor model behavior.
 Protect model weights.

Secure AI Operation and Maintenance

 Enforce strict access controls.
 Ensure user awareness and training.
 Conduct audits and penetration testing.
 Implement robust logging and monitoring.
 Update and patch regularly.
 Prepare for High Availability (HA) and Disaster Recovery (DR).
 Plan secure delete capabilities.

CSP-Specific Actions for AI

 If hosting on AWS, consider using the AWS Cloud Adoption Framework for Artificial
Intelligence, Machine Learning, and Generative AI.

https://docs.aws.amazon.com/whitepapers/latest/aws-caf-for-ai/aws-caf-for-ai.html
https://docs.aws.amazon.com/whitepapers/latest/aws-caf-for-ai/aws-caf-for-ai.html

UNCLASSIFIED

UNCLASSIFIED

30

Play 24. Secure Application Programming Interfaces
Secure Application Programming Interfaces (APIs) and use an API gateway.

Any service provided by a CSP, or the MO will have an API. Moreover, web applications are
typically built with one or more backend services, each of which has an API, and one or
more client applications (such as a browser or a mobile application) that call these APIs.
An API provides a standard interface to interact with the service. Using an API helps
decouple the implementation of the backend services from the interface, so that the
services can change without necessarily changing the API. Naturally, APIs have become
major targets for MCAs.

It is important to secure these APIs. API Security “focuses on strategies and solutions to
understand and mitigate the unique vulnerabilities and security risks of Application
Programming Interfaces (APIs).”3

Be aware of vulnerabilities unique to APIs. Appendix A includes the top ten vulnerabilities
related to APIs according to the OWASP API Security Top 10 for 2023. Here is a brief list.

• API1:2023 - Broken Object Level Authorization
• API2:2023 - Broken Authentication
• API3:2023 - Broken Object Property Level Authorization
• API4:2023 - Unrestricted Resource Consumption
• API5:2023 - Broken Function Level Authorization
• API6:2023 - Unrestricted Access to Sensitive Business Flows
• API7:2023 - Server-Side Request Forgery
• API8:2023 - Security Misconfiguration
• API9:2023 - Improper Inventory Management
• API10:2023 - Unsafe Consumption of APIs

Major CSPs have CSOs that help manage and secure APIs. One service they offer is an API
gateway, which is a managed service that simplifies maintaining, monitoring, and securing
APIs.4

Requests from a client application to a backend (CSP or MO) service is routed to the API
gateway, which then forwards them to the appropriate service. The API gateway acts as a
façade to the backend services, offering a layer of abstraction to enable backend services

3 Source: https://owasp.org/www-project-api-security/
4 Source: https://aws.amazon.com/api-gateway/

https://owasp.org/API-Security/editions/2023/en/0x11-t10/
https://owasp.org/www-project-api-security/
https://aws.amazon.com/api-gateway/

UNCLASSIFIED

UNCLASSIFIED

31

to evolve without impacting the client applications. The API gateway “enables consistent
configuration of routing, security, throttling, caching, and observability.”5

The gateway:

• Acts as a façade to backend services
• Verifies API keys and other credentials such as tokens and certificates presented

with requests
• Enforces usage quotas and rate limits
• Optionally transforms requests and responses as specified in policy statements
• If configured, caches responses to improve response latency and minimize the load

on backend services
• Emits logs, metrics, and traces for monitoring, reporting, and troubleshooting 6

Actions

 Enable an API gateway to help manage and secure APIs.
 Consider using other CSOs related to APIs that are offered by the selected CSP.

5 Source: https://learn.microsoft.com/en-us/azure/api-management/api-management-key-concepts
6 Ibid.

https://learn.microsoft.com/en-us/azure/api-management/api-management-key-concepts

UNCLASSIFIED

UNCLASSIFIED

32

Conclusion
This volume of the Cloud Security Playbook has discussed several important topics,
including securing containers and microservices, defending DevSecOps pipelines, and
securing AI systems.

Together with volume 1 the playbook provides numerous actions that mission owners can
take to significantly improve their security in a cloud.

UNCLASSIFIED

UNCLASSIFIED

33

References

[1] R. Chandramouli, "NIST Special Publication 800-204, Security Strategies for
Microservices-based Application Systems," August 2019. [Online]. Available:
https://doi.org/10.6028/NIST.SP.800-204.

[2] R. Chandramouli and Z. Butcher, "NIST Special Publication 800-204A, Building
Secure Microservices-based Applications Using Service-Mesh Architecture," May
2020. [Online]. Available: https://doi.org/10.6028/NIST.SP.800-204A.

[3] DISA, "Container Hardening Process Guide, Version 1, Release 2," 24 August 2022.
[Online]. Available: https://dl.dod.cyber.mil/wp-
content/uploads/devsecops/pdf/Final_DevSecOps_Enterprise_Container_Hardeni
ng_Guide_1.2.pdf.

[4] M. Souppaya, J. Morello and K. Scarfone, "NIST Special Publication 800-190,
Application Container Security Guide," September 2017. [Online]. Available:
https://doi.org/10.6028/NIST.SP.800-190.

[5] DoD CIO, "DoD Enterprise DevSecOps Reference Design: CNCF Kubernetes,
Version 2.1," Sep 2021. [Online]. Available: https://dodcio.defense.gov/Library/.

[6] DoD CIO, "DoD Enterprise DevSecOps Fundamentals," September 2021. [Online].
Available: https://dodcio.defense.gov/Library/.

[7] DoD CIO, "DevSecOps Continuous Authorization Implementation Guide," March
2024. [Online]. Available: https://dodcio.defense.gov/Library/.

[8] NSA, "NSA's Top Ten Cloud Security Mitigation Strategies," 2024. [Online].
Available: https://media.defense.gov/2024/Mar/07/2003407860/-1/-1/0/CSI-
CloudTop10-Mitigation-Strategies.PDF.

[9] NSA, Cybersecurity and Infrastructure Security Agency (CISA) , "Defending
Continuous Integration/Continuous Delivery (CI/CD) Environments," June 2023.
[Online]. Available: https://media.defense.gov/2023/Jun/28/2003249466/-1/-
1/0/CSI_DEFENDING_CI_CD_ENVIRONMENTS.PDF.

[10] Open Web Application Security Project® (OWASP), "Open Web Application Security
Project® (OWASP) Top 10 CI/CD Security Risks," [Online]. Available:
https://owasp.org/www-project-top-10-ci-cd-security-risks/.

[11] DoD CIO, "DevSecOps Continuous Authorization to Operate (cATO) Evaluation
Criteria," May 2024. [Online]. Available: https://dodcio.defense.gov/Library/ .

UNCLASSIFIED

UNCLASSIFIED

34

[12] NIST, "Security Considerations for Code Signing," January 2018. [Online]. Available:
https://doi.org/10.6028/NIST.CSWP.5.

[13] NSA, CISA, ODNI, "Securing the Software Supply Chain: Recommended Practices
Guide for Developers," 1 September 2022. [Online]. Available:
https://media.defense.gov/2022/Sep/01/2003068942/-1/-
1/0/ESF_SECURING_THE_SOFTWARE_SUPPLY_CHAIN_DEVELOPERS.PDF.

[14] ESF, "Securing the Software Supply Chain: Recommended Practices Guide for
Customers," 17 November 2022. [Online]. Available:
https://www.nsa.gov/About/Cybersecurity-Collaboration-Center/Enduring-
Security-Framework/.

[15] ESF, "Securing the Software Supply Chain: Recommended Practices for Managing
Open-Source Software and Software Bill of Materials," 11 December 2023. [Online].
Available: https://www.nsa.gov/About/Cybersecurity-Collaboration-
Center/Enduring-Security-Framework/.

[16] ESF, "Securing the Software Supply Chain: Recommended Practices for Software
Bill of Materials Consumption," 9 November 2023. [Online]. Available:
https://www.nsa.gov/About/Cybersecurity-Collaboration-Center/Enduring-
Security-Framework/.

[17] NSA, "Embracing a Zero Trust Security Model," Feb 2021. [Online]. Available:
https://media.defense.gov/2021/Feb/25/2002588479/-1/-1/-
/CSI_EMBRACING_ZT_SECURITY_MODEL_UOO115131-21.pdf.

[18] DoD CIO, "Fulcrum Information Technology Advancement Strategy," 6 June 2024.
[Online]. Available:
https://dodcio.defense.gov/Portals/0/Documents/Library/FulcrumAdvStrat.pdf.

[19] DoD CIO, "DoD Zero Trust Strategy," 2022.

[20] DoD CIO, "DoD Zero Trust Capability Execution Roadmap (COA1)," 6 Jan 2023.
[Online]. Available:
https://dodcio.defense.gov/Portals/0/Documents/Library/ZTCapabilitiesActivities.p
df.

[21] Defense Information Systems Agency (DISA) and National Security Agency (NSA),
"DoD Zero Trust Reference Architecture Version 2.0," July 2022. [Online]. Available:
https://dodcio.defense.gov/Portals/0/Documents/Library/(U)ZT_RA_v2.0(U)_Sep22.
pdf.

UNCLASSIFIED

UNCLASSIFIED

35

[22] CISA, "Zero Trust Security Maturity Model," April 2023. [Online]. Available:
https://www.cisa.gov/sites/default/files/2023-
04/zero_trust_maturity_model_v2_508.pdf.

[23] NSA, "Advancing Zero Trust Maturity Throughout the User Pillar," March 2023.
[Online]. Available: https://media.defense.gov/2023/Mar/14/2003178390/-1/-
1/0/CSI_Zero_Trust_User_Pillar_v1.1.PDF.

[24] Cybersecurity and Infrastructure Security Agency, United States Digital Service, and
the Federal Risk and Authorization Management Program, "Cloud Security
Technical Reference Architecture, version 2.0," June 2022. [Online]. Available:
https://www.cisa.gov/sites/default/files/2023-
05/Cloud%20Security%20Technical%20Reference%20Architecture%20v2.pdf.

[25] National Institute of Standards and Technology, "Special Publication 800-207: Zero
Trust Architecture," 2020. [Online]. Available:
https://csrc.nist.gov/publications/detail/sp/800-207/final.

[26] NSA, "Deploying AI Systems Securely, Ver. 1.0," April 2024. [Online]. Available:
https://media.defense.gov/2024/Apr/15/2003439257/-1/-1/0/CSI-DEPLOYING-AI-
SYSTEMS-SECURELY.PDF.

[27] NIST, "AI 100-1, Artificial Intelligence Risk Management Framework (AI RMF 1.0),"
January 2023. [Online]. Available: https://doi.org/10.6028/NIST.AI.100-1.

[28] U.S. Congress, "National Artificial Intelligence Initiative Act of 2020 (enacted as
Division E of the William M . (Mac) Thornberry National Defense Authorization Act for
Fiscal Year 2021 (Public Law 116-283), Section 5002(3)," 2021. [Online]. Available:
https://www.congress.gov/bill/116th-congress/house-bill/6216/text#toc-
H41B3DA72782B491EA6B81C74BB00E5C0.

[29] DISA, "Cloud Service Provider (CSP) Security Requirements Guide (SRG), Version 1,
Release 1," 14 June 2024. [Online]. Available: https://public.cyber.mil/dccs/dccs-
documents/.

[30] NIST, "NIST SPECIAL PUBLICATION 1800-19, Trusted Cloud: Security Practice Guide
for VMware Hybrid Cloud Infrastructure as a Service (IaaS) Environments," April
2022. [Online]. Available: https://doi.org/10.6028/NIST.SP.1800-19.

[31] National Cyber Security Centre (NCSC), "The Near-term Impact of AI on the Cyber
Threat, NCSC," 24 January 2024. [Online]. Available:
https://www.ncsc.gov.uk/report/impact-of-ai-on-cyber-threat.

UNCLASSIFIED

UNCLASSIFIED

36

[32] United States Department of Homeland Security, "Cyber Safety Review Board
Releases Report on Microsoft Online Exchange Incident from Summer 2023," 2 April
2024. [Online]. Available: https://www.dhs.gov/news/2024/04/02/cyber-safety-
review-board-releases-report-microsoft-online-exchange-incident-summer.

UNCLASSIFIED

UNCLASSIFIED

37

Appendix A. Glossary
Term Definition

Artificial
Intelligence (AI)

AI is a machine-based system that can, for a given set of human-
defined objectives, make predictions, recommendations or decisions
influencing real or virtual environments. Artificial intelligence systems
use machine and human-based inputs to

a) perceive real and virtual environments;
b) abstract such perceptions into models through analysis in an

automated manner; and
c) use model inference to formulate options for information or

action.
(Source: National Artificial Intelligence Initiative Act of 2020 (Public
Law 116-283) Section 5002(3) [28]).

Cloud Service
Offering (CSO)

A CSO is a service offered by a CSP. Each CSP provides many
different CSOs.

Cloud Service
Provider (CSP)

A CSP is an entity that offers one or more cloud services in one or
more deployment models. Each CSP provides many CSOs. – (Source:
Cloud Service Provider (CSP) Security Requirements Guide (SRG),
Version 1, Release 1, DISA,14 June 2024 [29].

Cloud workload A logical bundle of software and data that is present in, and
processed by, a cloud computing technology. (Source: NIST SP 1800-
19 [30]).

Continuous
Authorization to
Operate (cATO)

Continuous Authorization to Operate (cATO) is the state achieved
when the organization that develops, secures, and operates a system
has demonstrated sufficient maturity in their ability to maintain a
resilient cybersecurity posture that traditional risk assessments and
authorizations become redundant. This organization must have
implemented robust information security continuous monitoring
capabilities, active cyber defense, and secure software supply chain
requirements to enable continuous delivery of capabilities without
adversely impacting the system’s cyber posture. (Source: DevSecOps
Continuous Authorization Implementation Guide [7]).

UNCLASSIFIED

UNCLASSIFIED

38

DevSecOps
pipeline

A collection of DevSecOps tools, upon which the DevSecOps process
workflows can be created and executed. (Source: DoD Enterprise
DevSecOps Fundamentals [6]).

DevSecOps
Platform (DSOP)

The set of tools and automation that enables a software factory. It
includes the ability to create DevSecOps pipelines with control gates,
and to deploy software into development, test, and staging/pre-
production environments. It may also deploy into production,
depending on the production environment. (Source: DevSecOps
Continuous Authorization Implementation Guide [7]).

Generative AI AI that can generate new content, such as text, images or video.
Large Language Models (LLMs) are an example of generative AI.
(Source: The near-term impact of AI on the cyber threat, 2024 [31]).

Infrastructure as
a Service (IaaS)

The capability provided to the consumer is to provision processing,
storage, networks, and other fundamental computing resources
where the consumer is able to deploy and run arbitrary software,
which can include operating systems and applications. The
consumer does not manage or control the underlying cloud
infrastructure but has control over operating systems, storage, and
deployed applications; and possibly limited control of select
networking components (e.g., host firewalls). (Source: NIST
Glossary).

Large Language
Model (LLM)

A large language model (LLM) is a specialized type of artificial
intelligence (AI) that has been trained on vast amounts of text to
understand existing content and generate original content. (Source:
Gartner Glossary)

Machine
Learning (ML)

Machine Learning is an application of artificial intelligence that is
characterized by providing systems the ability to automatically learn
and improve on the basis of data or experience, without being
explicitly programmed. (Source: National Artificial Intelligence
Initiative Act of 2020 (Public Law 116-283) Section 5002(3) [28]).

Platform as a
Service (PaaS)

The capability provided to the consumer is to deploy onto the cloud
infrastructure consumer-created or acquired applications created
using programming languages, libraries, services, and tools
supported by the provider. The consumer does not manage or control
the underlying cloud infrastructure including network, servers,

https://csrc.nist.gov/glossary/term/infrastructure_as_a_service
https://csrc.nist.gov/glossary/term/infrastructure_as_a_service
https://www.gartner.com/en/information-technology/glossary/large-language-models-llm#:~:text=A%20large%20language%20model%20(LLM,content%20and%20generate%20original%20content.

UNCLASSIFIED

UNCLASSIFIED

39

operating systems, or storage, but has control over the deployed
applications and possibly configuration settings for the application-
hosting environment. (Source: NIST Glossary)

Software as a
Service (SaaS)

The capability provided to the consumer is to use the provider’s
applications running on a cloud infrastructure. The applications are
accessible from various client devices through either a thin client
interface, such as a web browser (e.g., web-based email), or a
program interface. The consumer does not manage or control the
underlying cloud infrastructure including network, servers, operating
systems, storage, or even individual application capabilities, with the
possible exception of limited user-specific application configuration
settings. (Source: NIST Glossary).

Software Factory A DSOP combined with the people and processes that support the
DSOP, as well as a hosting environment such as a cloud; it includes
at least development, test and staging/pre-production environments,
and it may include a production environment, as well as other
environments such as integration. (Source: DevSecOps Continuous
Authorization Implementation Guide [7]).

Threat Any circumstance or event with the potential to adversely impact
organizational operations (including mission, functions, image, or
reputation), organizational assets, or individuals through an
information system via unauthorized access, destruction, disclosure,
modification of information, and/or denial of service. Also, the
potential for a threat-source to successfully exploit a particular
information system vulnerability. (Source: NIST Glossary).

Vulnerability A weakness in an information system, system security procedures,
internal controls, or implementation that could be exploited or
triggered by a threat source. (Source: NIST Glossary)

https://csrc.nist.gov/glossary/term/platform_as_a_service
https://csrc.nist.gov/glossary/term/software_as_a_service
https://csrc.nist.gov/glossary/term/threat
https://csrc.nist.gov/glossary/term/vulnerability

UNCLASSIFIED

UNCLASSIFIED

40

Appendix B. Acronyms
Acronym Definition
3PAO Third Party Assessment Organization
ACAS Assured Compliance Assessment Solution
AD Active Directory
AI Artificial Intelligence
AO Authorizing Official
API Application Programming Interface
APT Advanced Persistent Threat
AST Application Security Testing
ATO Authorization to Operate
ATT&CK Adversarial Tactics, Techniques & Common Knowledge
AWS Amazon Web Services
BCAP Boundary Cloud Access Point
BCD Boundary Cyberspace Defense
BOM Bill of Materials
C-ITP Cloud Information Technology Project
CAC Common Access Card
CAO Connection Approval Office
CAP Cloud Access Point
CATC Cloud Authorization to Connect
CAVEaT Cloud Adversarial, Vectors, and Threats
CC Cloud Computing
CC SRG Cloud Computing Security Requirements Guide
CD Continuous Delivery
CDR Cloud Detection and Response
CERT Computer Emergency Readiness Team
CI Continuous Integration
CI/CD Continuous Integration / Continuous Delivery
CIEM Cloud Infrastructure Entitlement Management
CIO Chief Information Officer
CISA Cybersecurity and Infrastructure Security Agency
CNAP Cloud Native Access Point
CNAPP Cloud-Native Application Protection Platform
CNCF Cloud Native Computing Foundation
CND Computer Network Defense
CNDSP Computer Network Defense Service Provider
CNSA Commercial National Security Algorithm
CNSS Committee on National Security Systems
CNSSI Committee on National Security Systems Instruction
CNSSP Committee on National Security Systems Policy
COA Course of Action

UNCLASSIFIED

UNCLASSIFIED

41

Acronym Definition
COOP Continuity of Operations
CPTC Cloud Permission to Connect
CPTs Cyber Protection Teams
CPU Central Processing Unit
CRL Certificate Revocation List
CRT Continuous Risk Treatment
CS Cybersecurity
CSA Cloud Security Alliance
CSO Cloud Service Offering
CSP Cloud Service Provider
CSPM Cloud Security Posture Management
CSSP Cybersecurity Service Provider
CUI Controlled Unclassified Information
CVE Common Vulnerabilities and Exposures
CWE Common Weakness Enumeration
CWP Cloud Workload Protection
D3FEND Detection, Denial, and Disruption Framework Empowering Network Defense
DAST Dynamic Application Security Testing
DB database
DCAS DoD Cloud Authorization Services
DCAT DoD Cyber Assessment Team
DCD DODIN Cyberspace Defense
DCO Defensive Cyberspace Operations
DCRT DoD Cyber Red Team
DevSecOps Development Security Operations
DFARS Defense Federal Acquisition Regulation Supplement
DHS Department of Homeland Security
DISA Defense Information Systems Agency
DISN Defense Information Systems Network
DMZ demilitarized zone
DoD Department of Defense
DoDI Department of Defense Instruction
DODIN DoD Information Network
DR Disaster Recovery
DSAWG DOD Security/Cybersecurity Authorization Working Group
DSOP DevSecOps Platform
DSS DISN Subscription Service
DTM Directive-type Memorandum
EaC Everything as Code
EDR Endpoint Detection and Response
eMASS Enterprise Mission Assurance Support Service
ESF Enduring Security Framework

UNCLASSIFIED

UNCLASSIFIED

42

Acronym Definition
ETL Extract, Transform, and Load
FE Federated Entity
FedRAMP Federal Risk and Authorization Management Program
FIDO Fast IDentity Online
FIPS Federal Information Processing Standard
HA High Availability
HIDS Host Intrusion Detection System
HSM Hardware Security Module
HTTP Hypertext Transfer Protocol
IA Information Assurance
IaaS Infrastructure as a Service
IaC Infrastructure as Code
IAM Identity and Access Management
IAP Internet Access Point
IAST Interactive Application Security Testing
IATT Interim Authorization to Test
ICAM Identity, Credential, and Access Management
ID Identification
IdAM Identify and Access Management
IDM Internal Defensive Measures
IDS Intrusion Detection System
IE Information Enterprise
IL Impact Level
IMDS Instance Metadata Service
IoT Internet of Things
IP Internet Protocol
IPS Intrusion Prevention System
IT Information Technology
JFHQ Joint Force Headquarters
JIT Just-in-Time
JWCC Joint Warfighter Cloud Capability
KM Key Management
KMS Key Management System
LLM Large Language Model
MCA Malicious Cyber Actor
MCD Mission Cyberspace Defense
MFA Multi-Factor Authentication
ML Machine Learning
MO Mission Owner
MOSA Modular Open System Approach
MPE Mission Partner Environment
mTLS mutual Transport Layer Security

UNCLASSIFIED

UNCLASSIFIED

43

Acronym Definition
NCSC National Cyber Security Centre
NIDS Network Intrusion Detection System
NIPRNet Non-classified Internet Protocol Router Network
NIST National Institute of Standards and Technology
NPE Non-Person Entity
NSA National Security Agency
NSS National Security Systems
OCI Open Container Initiative
OCSP Online Certificate Status Protocol
ODNI Office of the Director of National Intelligence
OS Operating System
OSI Open Systems Interconnection
OWASP Open Web Application Security Project
PA Provisional Authorization
PaaS Platform as a Service
PaC Policy as Code
PAW Privileged Access Workstation
PBAC Pipeline-Based Access Controls
PE Person Entity
PIN Personal Identification Number
PK Public Key
PKI Public Key Infrastructure
POA&M Plan of Action and Milestones
PoLP Principle of Least Privilege
PPE Poisoned Pipeline Execution
RD Reference Design
RME Risk Management Executive
RMF Risk Management Framework
SaaS Software as a Service
SAST Static Application Security Testing
SBOM Software Bill of Materials
SCA Software Composition Analysis
SCAP Security Content Automation Protocol
SDN Software Defined Network
SDP Software Defined Perimeter
SIEM Security Information and Event Management
SIPRNet Secret Internet Protocol Router Network
SLA Service Level Agreement
SNAP System Network Approval Process
SOAR Security Orchestration, Automation, and Response
SOC Security Operations Center
SP Special Publication

UNCLASSIFIED

UNCLASSIFIED

44

Acronym Definition
SQL Structured Query Language
SRG Security Requirements Guide
SSC Sidecar Security Container
SSH Secure Shell
SSL Secure Sockets Layer
SSP System Security Plan
SSRF Server-Side Request Forgery
STIG Security Technical Implementation Guide
TAG Technical Advisory Group
TLS Transport Layer Security
TTP Tactics, Techniques, and Procedures
U.S. United States
UEBA User and Entity Behavior Analytics
URI Uniform Resource Identifier
US United States
US-CERT United States - Computer Emergency Readiness Team
VDMS Virtual Datacenter Managed Service
VDSS Virtual Datacenter Security Stack
VM Virtual Machine
VNet Virtual Network
VPC Virtual Private Cloud
VPN Virtual Private Network
WAF Web Application Firewall
XDR Extended Detection and Response
ZT Zero Trust
ZTA Zero Trust Architecture
ZTNA Zero Trust Network Access

	Structure Bookmarks
	Introduction
	Audience
	Purpose
	Play Reading Order
	Play 19. Secure Containers and Microservices
	Microservices
	Containers
	Kubernetes
	Sidecar Security Container (SSC)
	Service Mesh
	Ambient Mesh
	Actions
	Play 20. Defend DevSecOps Pipelines
	Key Terms
	Pipeline Threats
	Top Ten Pipeline Risks and Mitigations
	Continuous Authorization to Operate
	Actions
	Play 21. Mitigate Third Party Risk
	Secure Software Supply Chain
	Actions
	Play 22. Move Towards Zero Trust (ZT)
	Actions
	Play 23. Secure Artificial Intelligence (AI) Systems
	Actions
	Play 24. Secure Application Programming Interfaces
	Actions
	Conclusion
	References
	Appendix A. Glossary
	Appendix B. Acronyms

Accessibility Report

		Filename:

		DoD CIO Cloud Security Playbook Vol 2_2025-02-11 508.pdf

		Report created by:

		Marilyn Anderson, 508 Technical Lead

		Organization:

		DoD , CIO

 [Personal and organization information from the Preferences > Identity dialog.]

Summary

The checker found no problems in this document.

		Needs manual check: 0

		Passed manually: 2

		Failed manually: 0

		Skipped: 4

		Passed: 26

		Failed: 0

Detailed Report

		Document

		Rule Name		Status		Description

		Accessibility permission flag		Passed		Accessibility permission flag must be set

		Image-only PDF		Passed		Document is not image-only PDF

		Tagged PDF		Passed		Document is tagged PDF

		Logical Reading Order		Passed manually		Document structure provides a logical reading order

		Primary language		Passed		Text language is specified

		Title		Passed		Document title is showing in title bar

		Bookmarks		Passed		Bookmarks are present in large documents

		Color contrast		Passed manually		Document has appropriate color contrast

		Page Content

		Rule Name		Status		Description

		Tagged content		Skipped		All page content is tagged

		Tagged annotations		Skipped		All annotations are tagged

		Tab order		Passed		Tab order is consistent with structure order

		Character encoding		Passed		Reliable character encoding is provided

		Tagged multimedia		Passed		All multimedia objects are tagged

		Screen flicker		Passed		Page will not cause screen flicker

		Scripts		Passed		No inaccessible scripts

		Timed responses		Passed		Page does not require timed responses

		Navigation links		Passed		Navigation links are not repetitive

		Forms

		Rule Name		Status		Description

		Tagged form fields		Passed		All form fields are tagged

		Field descriptions		Passed		All form fields have description

		Alternate Text

		Rule Name		Status		Description

		Figures alternate text		Passed		Figures require alternate text

		Nested alternate text		Passed		Alternate text that will never be read

		Associated with content		Passed		Alternate text must be associated with some content

		Hides annotation		Passed		Alternate text should not hide annotation

		Other elements alternate text		Skipped		Other elements that require alternate text

		Tables

		Rule Name		Status		Description

		Rows		Passed		TR must be a child of Table, THead, TBody, or TFoot

		TH and TD		Passed		TH and TD must be children of TR

		Headers		Passed		Tables should have headers

		Regularity		Passed		Tables must contain the same number of columns in each row and rows in each column

		Summary		Skipped		Tables must have a summary

		Lists

		Rule Name		Status		Description

		List items		Passed		LI must be a child of L

		Lbl and LBody		Passed		Lbl and LBody must be children of LI

		Headings

		Rule Name		Status		Description

		Appropriate nesting		Passed		Appropriate nesting

Back to Top

	Signature of Charles L:
		2025-02-21T15:03:23-0500
	MARTIN.CHARLES.L.1171456467

		2025-02-21T14:59:15-0500
	LAMB.GEORGE.WILLIE.IV.1506724321

