
UNCLASSIFIED

i

UNCLASSIFIED

DoD Enterprise DevSecOps
Reference Design

Version 1.0
12 August 2019

Department of Defense (DoD)
 Chief Information Officer

DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited.

dkluzik
Cleared

UNCLASSIFIED

ii

UNCLASSIFIED

Document Approvals

Prepared By:

__

Thomas Lam

Acting Director of Architecture and Engineering

Department of Defense, Office of the Chief Information Officer (DoD CIO)

__

Nicolas Chaillan

Special Advisor for Cloud Security and DevSecOps

Department of Defense, Office the Undersecretary of Acquisition and Sustainment (A&S)

(currently: Chief Software Officer, Department of Defense, United States Air Force, SAF/AQ)

Approved By:

__

Peter Ranks

Deputy Chief Information Officer for Information Enterprise (DCIO IE)

Department of Defense, Office of the Chief Information Officer (DoD CIO)

UNCLASSIFIED

iii

UNCLASSIFIED

Trademark Information
Names, products, and services referenced within this document may be the trade names,
trademarks, or service marks of their respective owners. References to commercial vendors and
their products or services are provided strictly as a convenience to our readers, and do not
constitute or imply endorsement by the Department of any non-Federal entity, event, product,
service, or enterprise.

UNCLASSIFIED

iv

UNCLASSIFIED

Executive Summary
Legacy software acquisition and development practices in the DoD do not provide the agility to
deploy new software “at the speed of operations”. In addition, security is often an afterthought,
not built in from the beginning of the lifecycle of the application and underlying infrastructure.
DevSecOps is the industry best practice for rapid, secure software development.

DevSecOps is an organizational software engineering culture and practice that aims at unifying
software development (Dev), security (Sec) and operations (Ops). The main characteristic of
DevSecOps is to automate, monitor, and apply security at all phases of the software lifecycle:
plan, develop, build, test, release, deliver, deploy, operate, and monitor. In DevSecOps, testing
and security are shifted to the left through automated unit, functional, integration, and security
testing - this is a key DevSecOps differentiator since security and functional capabilities are
tested and built simultaneously.

The benefits of adopting DevSecOps include:

• Reduced mean-time to production: the average time it takes from when new software
features are required until they are running in production;

• Increased deployment frequency: how often a new release can be deployed into the
production environment;

• Fully automated risk characterization, monitoring, and mitigation across the application
lifecycle;

• Software updates and patching at "the speed of operations".

This DoD Enterprise DevSecOps Reference Design describes the DevSecOps lifecycle,
supporting pillars, and DevSecOps ecosystem; lists the tools and activities for DevSecOps
software factory and ecosystem; introduces the DoD enterprise DevSecOps container service that
provides hardened DevSecOps tools and deployment templates to the program application
DevSecOps teams to select; and showcases a sampling of software factory reference designs and
application security operations. This DoD Enterprise DevSecOps Reference Design provides
implementation and operational guidance to Information Technology (IT) capability providers,
IT capability consumers, application teams, and Authorizing Officials.

UNCLASSIFIED

v

UNCLASSIFIED

Table of Contents

1 Introduction ... 10

1.1 Background ... 10

1.2 Purpose .. 11

1.3 Scope .. 11

1.4 Document Overview ... 12

2 Assumptions and Principles .. 13

2.1 Assumptions .. 13

2.2 Principles ... 13

3 DevSecOps Concepts ... 15

3.1 Key Terms ... 15

3.1.1 Conceptual Model ... 18

3.2 DevSecOps Lifecycle .. 18

3.3 DevSecOps Pillars .. 19

3.3.1 Organization .. 20

3.3.2 Process .. 21

3.3.3 Technology ... 23

3.3.4 Governance ... 23

3.3.4.1 Management Structure ... 23

3.3.4.2 Authorizing Official .. 25

3.4 DevSecOps Ecosystem.. 26

3.4.1 Planning .. 27

3.4.2 Software Factory ... 28

3.4.3 Operations ... 29

3.4.4 External Systems ... 29

4 DevSecOps Tools and Activities ... 31

4.1 Planning Tools and Activities .. 31

4.2 Software Factory Tools and Activities ... 34

UNCLASSIFIED

vi

UNCLASSIFIED

4.2.1 CI/CD Orchestrator ... 34

4.2.2 Develop ... 35

4.2.3 Build .. 38

4.2.4 Test .. 40

4.2.5 Release and Deliver .. 45

4.3 Production Operation Tools and Activities ... 46

4.3.1 Deploy ... 46

4.3.1.1 Virtual Machine deployment ... 46

4.3.1.2 Container deployment.. 47

4.3.2 Operate .. 49

4.3.3 Monitor ... 50

4.4 Security Tools and Activities Summary ... 53

4.5 Configuration Management Tools and Activities Summary 54

4.6 Database Management Tools and Activities Summary .. 55

5 DoD Enterprise DevSecOps Container Service .. 57

5.1 DoD Enterprise DevSecOps Container Factory .. 57

5.1.1 DoD Hardened Containers .. 57

5.1.2 Container Hardening Process .. 58

5.1.2.1 Select the Container Base Image ... 58

5.1.2.2 Harden the Container ... 59

5.1.2.3 Store the Hardened Container .. 59

5.1.2.4 Documentation... 59

5.1.2.5 Continuous Engineering .. 60

5.1.2.6 Cybersecurity ... 60

5.2 DoD Centralized Artifact Repository ... 60

6 DevSecOps Ecosystem Reference Designs ... 61

6.1 Containerized Software Factory ... 61

6.1.1 Hosting Environment .. 62

6.1.2 Container Orchestration .. 63

UNCLASSIFIED

vii

UNCLASSIFIED

6.1.3 Software Factory Using Hardened Containers ... 63

6.1.4 DoD Applications ... 64

6.2 Software Factory using Cloud DevSecOps Services ... 65

6.3 Serverless Support.. 66

6.4 Application Security Operations... 68

6.4.1 Continuous Deployment ... 68

6.4.2 Continuous Operation ... 68

6.4.3 Continuous Monitoring ... 69

6.4.4 Sidecar Container Security Stack.. 70

7 Conclusion .. 75

Appendix A Acronym Table .. 76

Appendix B Glossary of Key Terms ... 79

Appendix C References .. 88

UNCLASSIFIED

viii

UNCLASSIFIED

List of Figures
Figure 1: Containers ... 17

Figure 2: Conceptual Model .. 18

Figure 3: DevSecOps Software Lifecycle .. 19

Figure 4: DevSecOps Pillars .. 20

Figure 5: Application DevSecOps Processes .. 22

Figure 6: Five Principles of Next Generation Governance ... 25

Figure 7: Assessment and Authorization Inheritance ... 26

Figure 8: DevSecOps Ecosystem.. 27

Figure 9: DevSecOps Software Factory .. 28

Figure 10: DoD Enterprise DevSecOps Container Service Architecture 57

Figure 11: Major Steps in the Container Hardening Process... 58

Figure 12: Containerized Software Factory Reference Design .. 62

Figure 13: DevSecOps Platform Options .. 63

Figure 14: Software Factory Phases in the Application Lifecycle .. 64

Figure 15: Software Factory using Cloud DevSecOps Services ... 66

Figure 16: Operational Efficiency ... 67

Figure 17: Logging and Log Analysis Process ... 70

Figure 18: Sidecar Pattern ... 71

Figure 19: Sidecar Components .. 72

Figure 20: Sidecar Container Security Stack Interactions ... 74

Figure 21: Hypervisor with Virtual Machines ... 84

UNCLASSIFIED

ix

UNCLASSIFIED

List of Tables
Table 1: Key Terms .. 15

Table 2: Roles of Authorizing Officials in DevSecOps .. 26

Table 3: Plan Phase Tools .. 31

Table 4: Plan Phase Activities .. 33

Table 5: CI/CD Orchestrator ... 35

Table 6: Develop Phase Tools .. 36

Table 7: Develop Phase Activities .. 37

Table 8: Build Phase Tools ... 38

Table 9: Build Phase Activities .. 39

Table 10: Test Phase Tools ... 40

Table 11: Test Phase Activities .. 43

Table 12: Release and Deliver Phase Tools .. 45

Table 13: Release and Deliver Phase Activities .. 46

Table 14: Deploy Phase Tools .. 47

Table 15: Deploy Phase Activities ... 48

Table 16: Operate Phase Tools .. 50

Table 17: Operate Phase Activities ... 50

Table 18: Monitor Phase Tools .. 51

Table 19: Monitor Phase Activities ... 52

Table 20: Security Activities Summary .. 53

Table 21: Configuration Management Activities Summary ... 54

Table 22: Database Management Activities Summary ... 56

Table 23: Sidecar Container Security Stack Components .. 72

UNCLASSIFIED

10

UNCLASSIFIED

1 Introduction

1.1 Background
DevSecOps is an organizational software engineering culture and practice that aims at unifying
software development (Dev), security (Sec) and operations (Ops). The main characteristic of
DevSecOps is to improve customer outcomes and mission value by automating, monitoring, and
applying security at all phases of the software lifecycle: plan, develop, build, test, release,
deliver, deploy, operate, and monitor. Practicing DevSecOps provides demonstrable quality and
security improvements over the traditional software lifecycle, which can be measured with these
metrics:

• Mean-time to production: the average time it takes from when new software features are
required until they are running in production.

• Average lead-time: how long it takes for a new requirement to be delivered and deployed.

• Deployment speed: how fast a new version of the application can be deployed into the
production environment.

• Deployment frequency: how often a new release can be deployed into the production
environment.

• Production failure rate: how often software fails during production.

• Mean-time to recovery: how long it takes applications in the production stage to recover
from failure.

In addition, DevSecOps practice enables:

• Fully automated risk characterization, monitoring, and mitigation across the application
lifecycle.

• Software updates and patching at a pace that allows the addressing of security
vulnerabilities and code weaknesses.

DevSecOps practice enables application security, secure deployment, and secure operations in
close alignment with mission objectives. In DevSecOps, testing and security are shifted to the
left through automated unit, functional, integration, and security testing - this is a key
DevSecOps differentiator since security and functional capabilities are tested and built
simultaneously. In addition, some security features are automatically injected into the application
without developer intervention via a sidecar container.

UNCLASSIFIED

11

UNCLASSIFIED

1.2 Purpose
The main purpose of this document is to provide a logical description of the key design
components and processes to provide a repeatable reference design that can be used to instantiate
a DoD DevSecOps software factory.

The target audiences for this document include:

• DoD Enterprise DevSecOps capability providers who build DoD Enterprise DevSecOps
hardened containers and provide a DevSecOps hardened container access service

• DoD organization DevSecOps teams who manage (instantiate and maintain) DevSecOps
software factories and associated pipelines for its programs

• DoD program application teams who use DevSecOps software factories to develop,
secure, and operate mission applications

• Authorizing Officials (AOs)

The DoD Enterprise DevSecOps reference design leverages a set of hardened DevSecOps tools
and deployment templates that enable DevSecOps teams to select the appropriate template for
the program application capability to be developed. For example, these templates will be
specialized around a specific programming language or around different types of capabilities
such as web application, transactional, big data, or artificial intelligence (AI) capabilities. A
program selects a DevSecOps template and toolset; the program then uses these to instantiate a
DevSecOps software factory and the associated pipelines that enable Continuous Integration and
Continuous Delivery (CI/CD) of the mission application.

This reference design aligns with these reference documents:

• DoD Cloud Computing Strategy [1]

• DoD Cloud Computing Security Requirements Guide [2]

• DoD Secure Cloud Computing Architecture (SCCA) [3]

• Presidential Executive Order on Strengthening the Cybersecurity of Federal Networks
and Critical Infrastructure (Executive Order (EO) 1380) [4]

• National Institute of Standards and Technology (NIST) Cybersecurity Framework [5]

• DoD Container Hardening Security Requirements Guide [6].

1.3 Scope
This document describes the reference design to enable DevSecOps to scale across the
department. DevSecOps is an established mature capability in industry, and it is already used
within some pockets of the Government; this reference design formalizes its usage across the

UNCLASSIFIED

12

UNCLASSIFIED

DoD. This design is product agnostic and provides execution guidance for use by software
teams. It is applicable to developing new capabilities and to sustaining existing capabilities in
both business and weapons systems software, including business transactions, C2, embedded
systems, big data, and Artificial Intelligence (AI).

This document does not address policy or acquisition.

1.4 Document Overview
The documentation is organized as follows.

• Section 1 describes the background, purpose and scope of this document.

• Section 2 describes the assumptions made in developing this reference design, as well as
stating foundational principles.

• Section 3 describes the DevSecOps lifecycle, the four pillars to assist DevSecOps
adoption, and a technical architecture of the DevSecOps software factory and its
ecosystem.

• Section 4 describes the DevSecOps ecosystem tools and the activities along software
lifecycle phases.

• Section 5 describes the DoD Enterprise DevSecOps Service. The target audience of this
section is DoD Enterprise DevSecOps capability providers.

• Section 6 describes the reference design for DoD programs to build their DevSecOps
software factory and ecosystem.

UNCLASSIFIED

13

UNCLASSIFIED

2 Assumptions and Principles

2.1 Assumptions
This document makes the following assumptions:

• For most organizations, deploying to a certified and monitored cloud environment will
become their preferred solution technically and culturally.

• Rapidly changing technology dictates designing the DevSecOps pipelines and patterns
for flexibility as new development capabilities enter/exit the commercial product market.

• The DoD Enterprise DevSecOps software factory is designed to avoid vendor lock-in and
leverage Open Container Initiative (OCI) compliant containers and Cloud Native
Computing Foundation (CNCF) certified Kubernetes to orchestrate and manage the
containers.

• The government must balance open source integration risks vs. using pre-integrated
Commercial Off-The-Shelf (COTS) products that have vendor “cost of exit” and vendor
insider risks.

• It must be possible to host a DevSecOps software factory in any DoD general-purpose
cloud environment, as well as in disconnected and classified environments.

• The DevSecOps architecture must have the capability to scale to any type of operational
requirement needing a software solution, including:

o Business systems

o Command and Control systems

o Embedded and Weapon systems

o Intelligence analysis systems

o Autonomous systems

o Assisted human operations

2.2 Principles
There are several key principles to implementing a successful DevSecOps approach:

• Remove bottlenecks (including human ones) and manual actions.

• Automate as much of the development and deployment activities as possible.

• Adopt common tools from planning and requirements through deployment and
operations.

UNCLASSIFIED

14

UNCLASSIFIED

• Leverage agile software principles and favor small, incremental, frequent updates over
larger, more sporadic releases.

• Apply the cross-functional skill sets of Development, Cybersecurity, and Operations
throughout the software lifecycle, embracing a continuous monitoring approach in
parallel instead of waiting to apply each skill set sequentially.

• Security risks of the underlying infrastructure must be measured and quantified, so that
the total risks and impacts to software applications are understood.

• Deploy immutable infrastructure, such as containers. The concept of immutable
infrastructure is an IT strategy in which deployed components are replaced in their
entirety, rather than being updated in place. Deploying immutable infrastructure requires
standardization and emulation of common infrastructure components to achieve
consistent and predictable results.

UNCLASSIFIED

15

UNCLASSIFIED

3 DevSecOps Concepts
DevSecOps describes an organization’s culture and practices enabling organizations to bridge
the gap between developers, security team, and operations team; improve processes through
collaborative and agile workflows; drive for faster and more secure software delivery via
technology; and achieve consistent governance and control. There is no uniform DevSecOps
practice. Each DoD organization needs to tailor its culture and its DevSecOps practices to its
own unique processes, products, security requirements, and operational procedures. Embracing
DevSecOps requires organizations to shift their culture, evolve existing processes, adopt new
technologies, and strengthen governance.

This section will briefly discuss the DevSecOps lifecycle, supporting pillars, and the DevSecOps
ecosystem.

3.1 Key Terms
Here are some key terms used throughout the document. Refer to the glossary in Appendix B for
the full list.

Table 1: Key Terms

Term Definition

DevSecOps Ecosystem A collection of tools and process workflows created and
executed on the tools to support all the activities throughout
the full DevSecOps lifecycle.

The process workflows may be fully automated, semi-
automated, or manual.

Software Factory A software assembly plant that contains multiple pipelines,
which are equipped with a set of tools, process workflows,
scripts, and environments, to produce a set of software
deployable artifacts with minimal human intervention. It
automates the activities in the develop, build, test, release,
and deliver phases. The software factory supports multi-
tenancy.

CI/CD Pipeline The set of tools and the associated process workflows to
achieve continuous integration and continuous delivery with
build, test, security, and release delivery activities, which
are steered by a CI/CD orchestrator and automated as much
as practice allows.

UNCLASSIFIED

16

UNCLASSIFIED

Term Definition

CI/CD Pipeline Instance A single process workflow and the tools to execute the
workflow for a specific software language and application
type for a project. As much of the pipeline process is
automated as is practicable.

Environment Sets a runtime boundary for the software component to be
deployed and executed. Typical environments include
development, integration, test, pre-production, and
production.

Software Factory Artifact
Repository

A local repository tied to the software factory. It stores
artifacts pulled from DoD Centralized Artifact Repository
(DCAR) as well as locally developed artifacts to be used in
DevSecOps processes. The artifacts include, but are not
limited to, virtual machine (VM) images, container images,
binary executables, archives, and documentation. It supports
multi-tenancy.
Note that programs may have a single artifact repository and
use tags to distinguish the content types. It is also possible
to have separate artifact repositories to store local artifacts
and released artifacts.

Code Software instructions for a computer, written in a
programming language. These instructions may be in the
form of either human-readable source code, or machine
code, which is source code that has been compiled into
machine executable instructions.

UNCLASSIFIED

17

UNCLASSIFIED

Term Definition

Containers A standard unit of software that packages up code and all its
dependencies, down to, but not including the Operating
System (OS). It is a lightweight, standalone, executable
package of software that includes everything needed to run
an application except the OS: code, runtime, system tools,
system libraries and settings.

Several containers can run in the same OS without
conflicting with one another.

Figure 1: Containers

Containers run on the OS, so no hypervisor (virtualization)
is necessary (though the OS itself may be running on a
hypervisor).

Containers are much smaller than a VM, typically by a
factor of 1,000 (MB vs GB), partly because they don’t need
to include the OS. Using containers allows denser packing
of applications than VMs.

Unlike VMs, containers are portable between clouds or
between clouds and on-premise servers. This helps alleviate
Cloud Service Provider (CSP) lock-in, though an
application may still be locked-in to a CSP, if it uses CSP-
specific services.

Containers also start much faster than a VM (seconds vs.
minutes), partly because the OS doesn’t need to boot.

UNCLASSIFIED

18

UNCLASSIFIED

3.1.1 Conceptual Model
The following conceptual model shows some of the most important concepts described in this
paper along with their relationships. It should help to clarify these relationships. When reading
text along an arrow, follow the direction of the arrow. So, a DevSecOps Ecosystem contains one
or more software factories, and each software factory contains one or more pipelines. The
diagram also shows that each software factory contains only one CI/CD Orchestrator, and that
many software factories use DCAR.

Figure 2: Conceptual Model

3.2 DevSecOps Lifecycle
The DevSecOps software lifecycle phases are illustrated in Figure 3. There are nine phases: plan,
develop, build, test, release, deliver, deploy, operate, and monitor. Security is embedded within

UNCLASSIFIED

19

UNCLASSIFIED

each phase.

Figure 3: DevSecOps Software Lifecycle

With DevSecOps, the software development lifecycle is not a monolithic linear process. The
“big bang” style delivery of the Waterfall process is replaced with small but more frequent
deliveries, so that it is easier to change course as necessary. Each small delivery is accomplished
through a fully automated process or semi-automated process with minimal human intervention
to accelerate continuous integration and delivery. The DevSecOps lifecycle is adaptable and has
many feedback loops for continuous improvement.

3.3 DevSecOps Pillars
DevSecOps are supported by four pillars: organization, process, technology, and governance, as
illustrated in Figure 4.

UNCLASSIFIED

20

UNCLASSIFIED

Figure 4: DevSecOps Pillars

For each DoD organization, the practice of DevSecOps starts with buy-in of the DevSecOps
philosophy by senior leaders within the organization. This leads to a change to the organizational
culture, along with the development of new collaborative processes, technologies and tools to
automate the process and to apply consistent governance. A project must advance in all four
areas to be successful.

3.3.1 Organization
The organization should embrace the following philosophies and ideas and incorporate them into
their daily activities and software lifecycle management processes.

• Change the organizational culture to take a holistic view and share the responsibility of
software development, security and operations. Train staff with DevSecOps concepts and
new technologies. Gradually gain buy-in from all stakeholders.

• Break down organizational silos. Increase the team communication and collaboration in
all phases of the software lifecycle.

• Actionable security and quality assurance (QA) information, such as security alerts or
QA reports, must be automatically available to the teams at each software lifecycle phase
to make collaborative actions possible.

UNCLASSIFIED

21

UNCLASSIFIED

• Build a culture of safety by sharing after-action reports on both positive and negative
events across the entire organization. Teams should use both success and failure as
learning opportunities to improve the system design, harden the implementation, and
enhance the incident response capability as part of the DevSecOps practice.

• Make many small, incremental changes instead of fewer large changes. The scope of
smaller changes is more limited and thus easier to manage.

• Embrace feedback and user driven change to respond to new, emerging, and unforeseen
requirements.

• Plan and budget for continuous code refactoring to ensure constant buy down of
accumulated technical debt.

3.3.2 Process
Depending on the mission environment, system complexity, system architecture, software design
choices, risk tolerance level, and system maturity level, each program’s software lifecycle has its
own unique management processes.

For example, suppose a mature web application software system has adopted a microservices
design. Its development, pre-production, and production environment are on the same cloud. The
test procedures are fully automated. This system could have a process flow to automate the
develop, build, test, secure, and delivery tasks to push updates into production quickly without
human intervention. On the other hand, a complex mission critical embedded system, such as a
weapons system, may have a different process that requires some tests that cannot be fully
automated. The software lifecycle process for that system will be significantly different from the
process for the web application system.

To adopt a DevSecOps process successfully, implement it in multiple, iterative phases. Start
small with some tasks that are easy to automate, then gradually build up the DevSecOps
capability and adjust the processes to match. Figure 5 illustrates this concept; it shows that a
software system can start with a Continuous Build pipeline, which only automates the build
process after the developer commits code. Over time, it can then progress to Continuous
Integration, Continuous Delivery, Continuous Deployment, Continuous Operation, and finally
Continuous Monitoring, to achieve the full closed loop of DevSecOps. A program could start
with a suitable process and then grow progressively from there. The process improvement is
frequent, and it responds to feedback to improve both the application and the process itself.

UNCLASSIFIED

22

UNCLASSIFIED

Figure 5: Application DevSecOps Processes

There is no “one size fits all” solution for process design. Each software team has its own unique
requirements and constraints. Below is a list of some best practices to guide the process design:

1. The process design is a collective effort from multidisciplinary teams.

2. Most of the processes should be automatable via tools and technologies.

3. The DevSecOps lifecycle is an iterative closed loop. Start small and build it up
progressively to strive for continuous improvement. Set up human intervention at the
control gates when necessary, depending on the maturity level of the process and the
team’s confidence level in the automation. Start with more human intervention and
gradually decrease it as possible.

4. AO should consider automating the Authority to Operate (ATO) process as much as
possible.

UNCLASSIFIED

23

UNCLASSIFIED

To help organizations evolve their DevSecOps capabilities and processes, the DoD has
developed a DevSecOps Maturity Model. This model details many steps that organizations can
take to move incrementally towards a higher DevSecOps maturity level. That maturity model is
presented in the DoD DevSecOps Playbook [7].

3.3.3 Technology
Many DevSecOps tools automate many tasks in the software lifecycle without human
involvement. Other DevSecOps tools, such as collaboration and communication tools, facilitate
and stimulate human interaction to improve productivity. Some DevSecOps tools aim to help an
activity at a specific lifecycle phase. For example, an Integrated Development Environment
(IDE) DevSecOps plug-in for develop phase, or a static application security test tool for the build
phase. Most tools assist a particular set of activities. The tags added to artifacts in the artifact
repository help guarantee that the same set of artifacts move together along a pipeline. Section 4
will introduce a variety of DevSecOps tools.

The instantiation of the DevSecOps environments can be orchestrated from configuration files
instead of setting up one component at a time manually. The infrastructure configuration files,
the DevSecOps tool configuration scripts, and the application run-time configuration scripts are
referred to as Infrastructure as Code (IaC). Taking the same approach as IaC, security teams
program security policies directly into configuration code, as well as implement security
compliance checking and auditing as code, which are referred as Security as Code (SaC). Both
IaC and SaC are treated as software and go through the rigorous software development processes
including design, development, version control, peer review, static analysis, and test.

Technologies and tools play a key role in DevSecOps practice to shorten the software lifecycle
and increase efficiency. They not only enable software production automation as part of a
software factory, but also allow operations and security process orchestration.

3.3.4 Governance
Governance actively assesses and manages the risks associated with the mission program
throughout the lifecycle. Governance activities do not stop after ATO but continue throughout
the software lifecycle, including operations and monitoring. DevSecOps can facilitate and
automate many governance activities.

3.3.4.1 Management Structure

The management objective of DevSecOps must be both “top-down” and “bottom-up” to balance
larger strategic goals. Studies (e.g., [8]) have shown that senior leader buy-in is crucial for
success. But buy-in at the staff level is also important to engender a sense of ownership, to
encourage the appropriate implementation of processes related to governance, and to enable team
members to support continuous process improvement. Continuous process improvement –
seeking opportunities to simplify and automate whenever and wherever possible – is essential for
governance to keep pace with a rapidly changing world.

UNCLASSIFIED

24

UNCLASSIFIED

Early DevSecOps efforts in the DoD, such as [9] have leveraged and adopted commercial best
practices. That document identifies Five Fundamental Principles of Next Generation Governance
(NGG):

1. Run IT with Mission Discipline: Tie requirements back to your organization’s mission. Every
action should be aligned to the mission. If they are not, then an evaluation should be
performed with Continuous Process Improvement to address how to tie actions to missions.

2. Invest in Automation: Automate everything possible, including actions, business processes,
decisions, approvals, documentation, and more. Automation, including designs, interfaces,
functional and security tests, and their related documentation, create the Artifacts of Record
that provide the body of evidence required by the Risk Management Framework (RMF) and
for historical audits when needed.

3. Embrace Adaptability: Accept that change can be required at any time, and all options are
available to achieve it. Fail fast, fail small, and fail forward. An example of failing forward is
when a developer finds that a release does not work. Then instead of restoring the server to
its pre-deployment state with the previous software, the developer’s change should be
discrete enough that they can fix it and address the issue through a newer release.

4. Promote Transparency: Offer open access across the organization to view the activities
occurring within the automated process and to view the auto-generated Artifacts of Record.
Transparency generates an environment for sharing ideas and developing solutions
comprised of Subject Matter Experts (SMEs) or leads from across the enterprise in the form
of cross-functional teams to avoid the “silo effect.” When composed of all representative
stakeholders, the team possesses the skills needed to build a mission system and the
collective ingenuity necessary to overcome all encountered challenges.

5. Inherent Accountability: Push down or delegate responsibility to the lowest level:

• Strategic: This is related to the Change Control Board (CCB) or Technical Review Board
(TRB); it involves “Big Change” unstructured decisions. These infrequent and high-risk
decisions have the potential to shape the strategy and mission of an organization.

• Operational: (Various Scrum) Cross-cutting, semi-structured decisions. In these frequent
and high-risk decisions, a series of small, interconnected decisions are made by different
groups as part of a collaborative, end-to-end decision process.

• Tactical: (Global Enterprise Partners (GEP)/Product Owner/Developers Activities)
Delegated, structured decisions. These frequent and low-risk decisions are effectively
handled by an individual or working team, with limited input from others.

These 5 principles are summarized in Figure 6, which is from [9].

UNCLASSIFIED

25

UNCLASSIFIED

Figure 6: Five Principles of Next Generation Governance

3.3.4.2 Authorizing Official

DoD Instruction (DoDI) 8510.01 [10] is the ultimate governance policy and states processes that
all DoD information system and platform information technology system must follow. It is under
revision and the following DevSecOps related governance information will be incorporated in
the future release.

For initial standup of a new DevSecOps software factory instance and a production operations
environment, the RMF process follows an enterprise level process. The assessment and
authorization (A&A) should inherit the certifications and authorizations of the underlying
infrastructure (e.g., a DoD cloud provisional authorization) and of the DoD Enterprise Hardened
Containers, without having to re-certify them. The program should have a formal Service Level
Agreement (SLA) with the underlying infrastructure provider about what services are included
and what authorizations can be inherited. This affects the status of applicable assessment
procedures and prepares the stage for inheritance into the operations environment and
application. Once the instance is authorized and operational, the specialty AO for the functional

UNCLASSIFIED

26

UNCLASSIFIED

area or the local AO for the program has cognizance for Continuous Authorization of the
environment. Figure 7 illustrates the A&A inheritance.

The specialty AO for the functional area or the local AO for the program has cognizance for
Continuous Authorization of the mission applications.

Figure 7: Assessment and Authorization Inheritance

Table 2: Roles of Authorizing Officials in DevSecOps

Capability Authorizing Official

DoD Enterprise Hardened Containers Enterprise AO (e.g., Defense Information
Systems Agency (DISA))

DevSecOps software factory instances Enterprise AO (e.g., DISA, Military
Department (MilDep) CIO)

Continuous Process Improvement / Continuous Authorization
of DevSecOps software factory instances

Specialty or Local AO (e.g., Program executive
Officer (PEO))

AO for mission applications Specialty or Local AO (e.g., PEO)

3.4 DevSecOps Ecosystem
The DevSecOps ecosystem is a collection of tools and the process workflows created and
executed on the tools to support all the activities throughout the full DevSecOps lifecycle. As
illustrated in Figure 8, the DevSecOps ecosystem is composed of three subsystems: planning, a
software factory, and production operations. The DevSecOps ecosystem interacts with external
enterprise services to get all dependency support, and with enterprise and local AO to gain
operation authorization.

The DevSecOps administration team is responsible for administrating the ecosystem tools and
automating the process workflows. The mission application team focuses on the development,
testing, security and operations tasks using the ecosystem.

UNCLASSIFIED

27

UNCLASSIFIED

Figure 8: DevSecOps Ecosystem

3.4.1 Planning
The plan phase involves activities that help the project manage time, cost, quality, risk and
issues. These activities include business-need assessment, project plan creation, feasibility
analysis, risk analysis, business requirements gathering, business process creation, system
design, DevSecOps design and ecosystem instantiation, etc. The plan phase repeats when
DevSecOps the lifecycle recycles. It is a best practice to develop a minimum viable product
(MVP) for critical business needs as the first thing to develop. Then get into the feedback loop
process as quickly as possible; this is recommended in the Lean Startup methodology [11]. The
DevSecOps design creates the DevSecOps processes and control gates, which will guide the
automation throughout the lifecycle. DevSecOps ecosystem tools will facilitate process
automation and consistent process execution.

The DevSecOps planning subsystem supports the activities in the plan phase using a set of
communication, collaboration, project management, and change management tools. In this
phase, the process workflows are not fully automated. The planning tools assist human
interaction and increase team productivity.

UNCLASSIFIED

28

UNCLASSIFIED

3.4.2 Software Factory
A software factory, illustrated in Figure 9, contains multiple pipelines, which are equipped with a
set of tools, process workflows, scripts, and environments, to produce a set of software
deployable artifacts with minimal human intervention. It automates the activities in the develop,
build, test, release, and deliver phases. The environments that are set up in the software factory
should be orchestrated with scripts that include IaC and SaC and which run on various tools. A
software factory must be designed for multi-tenancy and automate software production for
multiple projects. A DoD organization may need multiple pipelines for different types of
software systems, such as web applications or embedded systems.

Figure 9: DevSecOps Software Factory

The factory starts with the development team developing application code and IaC, QA
developing test scripts, and the security team developing SaC in their suitable IDEs. The entire
Software Factory should leverage OCI compliant containers and DoD Hardened Containers
whenever available. Once COTS, Government off the Shelf (GOTS), or newly developed code
and scripts are committed into the Software Factory’s code repository, the assembly line
automation kicks in. There could be multiple CI pipeline instances as assembly lines. Each is for
a specific application subsystem, such as a JavaScript assembly line for a web front-end, a
Python or R assembly line for data analytics, or a GoLang assembly line for a backend
application. The CI assembly line guides the subsystem through continuous integration by
building the code and incorporating dependencies (such as libraries) from the local artifact

UNCLASSIFIED

29

UNCLASSIFIED

repository. In addition, it performs tests in the development and test environments, such as unit
tests, static code analysis, functional tests, interface tests, dynamic code analysis, etc. The
subsystems that pass CI assembly line control gate policies will move into the pre-production
environment for systems integration. The CD assembly line takes over control from this point.
More tests and security scans are performed in this environment, such as performance tests,
acceptance test, security compliance scan, etc. The CD assembly line releases and delivers the
final product package to the released artifact repository if the control gate policies are met.

Developing applications using a DevSecOps software factory provides many benefits:

• Improved software product consistency and quality

• Shortened time to market and increased productivity

• Simplified governance

3.4.3 Operations
In the production environment, the released software is pulled from the released artifact
repository and deployed. Operations, operation monitoring, and security monitoring are
performed. Production operation tools aim to streamline and automate the deployment,
operations, and monitoring activities. Tools should be selected based on system functional
requirements and their suitability for the production environment infrastructure.

3.4.4 External Systems
The DevSecOps ecosystem itself and program applications depend on some DoD enterprise
services to acquire the necessary baseline tools, application dependencies, and security services
to operate.

• DoD Centralized Artifact Repository (DCAR) holds the hardened VM images and
hardened OCI compliant container images of: DevSecOps tools, container security
tools, and common program platform components (e.g. COTS or open source products)
that DoD program software teams can utilize as a baseline to facilitate the authorization
process.

• DoD Common Security Services are DoD enterprise-level common services that
facilitate cybersecurity enforcement and IT management. One security service will
perform traffic inspection and filtering to protect the mission enclave and mission
applications. Some security service examples include firewalls; Intrusion Detection
System (IDS)/Intrusion Prevention System (IPS); malware detection; data loss
prevention; host-based security; log/telemetry aggregation and analysis; and Identity,
Credential, and Access Management (ICAM). A Cybersecurity Service Provider
(CSSP) will provide additional services, including Attack Sensing and Warning
(ASW), Forensic Media Analysis (FMA), Assurance Vulnerability Management
(AVM), Incident Reporting (IR), Incident Handling Response (IHR), Information
Operations Condition (INFOCON), Cyber Protection Condition (CPCON), Malware
Notification Protection (MNP), and Network Security Monitoring (NSM).

UNCLASSIFIED

30

UNCLASSIFIED

The DevSecOps ecosystem interacts with the enterprise AO for the initial software factory ATO
and initial application ATO, as well as the local AO for continuous ATO for the application.

UNCLASSIFIED

31

UNCLASSIFIED

4 DevSecOps Tools and Activities
This section describes both tools for the DevSecOps ecosystem and DevSecOps activities for
each phase. Activities and tools are listed in table format. The Baseline column in the tool tables
has two values: Minimal Viable Product (MVP) and objective. They indicate whether the tool
must be available in the DevSecOps ecosystem MVP as threshold or if the tool is an objective to
be reached as the ecosystem matures. Activity tables list a wide range of activities for
DevSecOps practice. DoD organizations should define their own processes, choose proper
activities, and then select tools suitable for their systems to build software factories and
DevSecOps ecosystems. With the DevSecOps maturity progression, the level of activity
automation will increase.

4.1 Planning Tools and Activities
The Planning tools support software development planning, which includes configuration
management planning, change management planning, project management planning, system
design, software design, test planning, and security planning. Table 3 lists some tools that can
assist the planning process. Some tools will be used throughout the software lifecycle, such as a
team collaboration tool, an issue tracking system, and a project management system. Some tools
are shared at the enterprise level across programs. Policy and enforcement strategy should be
established for access controls on various tools.

Table 3: Plan Phase Tools

Tool Features Benefits Inputs Outputs Baseline

Team
collaboration
system

Audio/video
conferencing;
chat/messaging;
brainstorming
discussion board;
group calendars;
file sharing;
Wiki website

Simplify
communication
and boost team
efficiency

Team meetings;
Design notes;
Documentation

Organized
teamwork;
Version
controlled
documents

MVP

Issue tracking
system

Bugs and defect
management;
Feature and change
management;
Prioritization
management;
Assignment
management;
Escalation
management;
Knowledge base
management

Easy to detect
defect trends
Improve
software product
quality
Reduce cost and
improve Return
on Investment
(ROI)

Bug report
Feature/change
request
Root cause
analysis
Solutions

Issues
feature/change
tickets.
Issue
resolution
tracking
history

MVP

Asset
inventory
management

Collect information
about all IT assets;

Increase
situation
awareness

IT assets
(applications,
software

Asset
inventory

Objective

UNCLASSIFIED

32

UNCLASSIFIED

Tool Features Benefits Inputs Outputs Baseline

Maintain a “real-time”
inventory of all
applications, software
licenses, libraries,
operating systems, and
versioning information

licenses,
libraries,
operating
systems, and
versioning
information)

Configuration
management
database
(CMDB)

Auto-discovery;
Dependency mapping;
Integration with other
tools;
Configuration auditing

Centralized
database used by
many systems
(such as asset
management,
configuration
management,
incident
management,
etc.) during
development
and operations
phases.

IT hardware
and software
components
information

Configuration
items

Objective

Project
management
system

Task management
Scheduling and time
management
Resource management
Budget management
Risk management

Assist project
progress
tracking
Optimize
resource
allocation

Tasks,
scheduling,
resource
allocation, etc.

Project plan MVP

Software
system design
tool

Assist requirement
gathering,
system architecture
design, components
design, and interface
design

Independent of
programming
languages
Helps visualize
the software
system design

User
requirements
Design ideas

System design
documents,
Function
design
document,
Test plan,
System
deployment
environment
configuration
plan

Objective

Threat
modeling tool

Document system
security design;
Analyze the design for
potential security
issues;
Review and analysis
against common attack
patterns;
Suggest and manage
mitigation

Allows software
architects to
identify and
mitigate
potential
security issues
early.

System design Potential
threats and
mitigation plan

Objective

Data modeling
tool

Model the
interrelationship and
flows between different
data elements

Ensure the
required data
objects by the
system are
accurately
represented

System
requirement;
Business logic

Data model Objective if
using a
database

UNCLASSIFIED

33

UNCLASSIFIED

The activities supported by the plan phase are listed in Table 4. Some activities are suitable at
enterprise or program level, such as DevSecOps ecosystem design, project team onboarding
planning, and change management planning. Others fit at the project level and are considered
continuous in the DevSecOps lifecycle.

Table 4: Plan Phase Activities

Activities Description Inputs Outputs Tool
Dependencies

DevSecOps
ecosystem design

Design the
DevSecOps process
workflows that are
specific to this project

- Change
management
process;
- System design;
- Release plan &
schedule.

DevSecOps process
flow chart;
DevSecOps ecosystem
tool selection;
Deployment platform
selection

Team
collaboration
system

Project team
onboarding
planning

Plan the project team
onboarding process,
interface, access
control policy

Organization policy Onboarding plan Team
collaboration
system

Change
management
planning

Plan the change
control process

- Organizational
policy;
- Software
development best
practice.

Change control
procedures;
Review procedures;
Control review board;
change management
plan

Team
collaboration
system;
Issue tracking
system

Configuration
management
(CM) planning

Plan the configuration
control process;
Identify configuration
items

- Software
development,
security and
operations best
practice;
- IT infrastructure
asset;
- Software system
components.

CM processes and plan;
CM tool selection;
Responsible
configuration items;

Tagging strategy

Team
collaboration
system;
Issue tracking
system

Software
requirement
analysis

Gather the
requirements from all
stakeholders

- Stakeholder inputs
or feedback;
- Operation
monitoring
feedback;
- Test feedback.

-Feature requirements
-Performance
requirements
-Privacy requirements
-Security requirements

Team
collaboration
system;
Issue tracking
system

System design Design the system
based the
requirements

Requirements
documents

Documents:
-System architecture
-Functional design
-Data flow diagrams
-Test plan
-Infrastructure
configuration plan
-Tool selections
-Development tool
-Test tool
-Deployment platform

Team
collaboration
system;
Issue tracking
system
Software system
design tools

UNCLASSIFIED

34

UNCLASSIFIED

Activities Description Inputs Outputs Tool
Dependencies

Project planning Project task
management
Release planning

 Task plan & schedule;
Release plan &
schedule.

Team
collaboration
system;
Project
management
system

Risk management Risk assessment - System
architecture;
- Supply chain
information;
- Security risks.

Risk management plan Team
collaboration
system;

Configuration
identification

Discover or manual
input configuration
items into CMDB;
Establish system
baselines

-IT infrastructure
asset;
- Software system
components
(include DevSecOps
tools);
-code baselines
-document
baselines.

Configuration items CMDB;
Source code
repository;
Artifact
repository;
Team
collaboration
system

Threat modeling Identify potential
threats, weaknesses
and vulnerabilities.
Define the mitigation
plan

System design Potential threats and
mitigation plan

Threat modeling
tool

Database design Data modeling;
database selection;
Database deployment
topology

System requirement;
System design

Database design
document

Data modeling
tool;
Team
collaboration
system

Design review Review and approve
plans and documents

Plans and design
documents;

Review comments;
Action items

Team
collaboration
system

Documentation
version control

Track design changes Plans and design
documents;

Version controlled
documents

Team
collaboration
system

4.2 Software Factory Tools and Activities
Software factory tools include a CI/CD orchestrator, a set of development tools, and a group of
tools in the build, test, release, and deliver phases that are pluggable to the CI/CD orchestrator.

4.2.1 CI/CD Orchestrator
The CI/CD Orchestrator is the central automation engine of the CI/CD pipeline. It manages
pipeline creation, modification, execution, and termination.

The DevSecOps team creates a pipeline workflow in the Orchestrator by specifying a set of
stages, stage conditions, stage entrance and exit control rules, and stage activities. The

UNCLASSIFIED

35

UNCLASSIFIED

Orchestrator automates the pipeline workflow by validating the stage control rules. If all the
entrance rules of a stage are met, the Orchestrator will transition the pipeline into that stage and
perform the defined activities by coordinating the tools via plugins. If all the exit rules of the
current stage are met, the pipeline exits out the current stage and starts to validate the entrance
rules of the next stage.

Table 5 shows the features, benefits, and inputs and outputs of the CI/CD Orchestrator.

Table 5: CI/CD Orchestrator

Tool Features Benefits Inputs Outputs Baseline

CI/CD
Orchestrator

Create pipeline
workflow

Customizable
pipeline
solution

Human input about:
• A set of stages
• A set of event

triggers
• Each stage

entrance and exit
control gate

• Activities in each
stage

Pipeline workflow
configuration

MVP

Orchestrate
pipeline
workflow
execution by
coordinating
other plugin
tools or scripts.

Automate the
CI/CD tasks;
Auditable trail
of activities

Event triggers (such as
code commit, test
results, human input,
etc.);
Artifacts from the
artifact repository

Pipeline workflow
execution results
(such as control
gate validation,
stage transition,
activity execution,
etc.);
Event and activity
audit logs

4.2.2 Develop
The Develop phase uses tools to support the development activities that convert requirements
into source code. the source code includes application code, test scripts, Infrastructure as Code,
Security as Code, DevSecOps workflow scripts, etc. The development team may rely on a single
modern integrated development environment (IDE) for multiple programming language support.
The IDE code assistance feature aids developers with code completion, semantic coloring, and
library management to improve coding speed and quality. The integrated compiler, interpreter,
lint tools, and static code analysis plugins can catch code mistakes and suggest fixes before
developers check code into the source code repository. Source code peer review or pair
programming are other ways to ensure code quality control. All the code generated during
development must be committed to the source code repository and thus version controlled.
Committed code that breaks the build should be checked in on a branch and not merged into the
trunk until it is fixed.

The following tables list the components that facilitate code development, along with their inputs
and outputs.

UNCLASSIFIED

36

UNCLASSIFIED

Table 6: Develop Phase Tools

Tool Features Benefits Inputs Outputs Baseline

Integrated
development
environment
(IDE)

Source code editor
Intelligent code completion
Compiler or interpreter
Debugger
Build automation
(integration with a build
tool)

Visual
representation
Increase
efficiency
Faster coding with
less effort
Improved bug
fixing speed
Reproducible
builds via scripts

Developer
coding input

Source code MVP

Integrated
development
environment
(IDE)
security
plugins

Scan and analyze the code
as the developer writes it,
notify developer of
potential code weakness
and may suggest
remediation

Address source
code weaknesses
and aid developers
to improve secure
coding skills

Source code;
known
weaknesses

source code
weakness
findings

Objective

Source code
repository

Source code version
control
Branching and merging
Collaborative code review

Compare files,
identify
differences, and
merge the changes
if needed before
committing.
Keep track of
application builds

Source code
Infrastructure
as code

Version
controlled
source code

MVP

Source code
repository
security
plugin

Check the changes for
suspicious content such as
Secure Shell (SSH) keys,
authorization tokens,
passwords and other
sensitive information
before pushing the changes
to the main repository.
If it finds suspicious
content, it notifies the
developer and blocks the
commit.

Helps prevent
passwords and
other sensitive
data from being
committed into a
version control
repository

Locally
committed
source code

Security
findings and
warnings

Objective

Code quality
review tool

View code changes,
identify defects, reject or
approve the changes, and
make comments on specific
lines. Sets review rules and
automatic notifications to
ensure that reviews are
completed on time.

Automates the
review process
which in turn
minimizes the task
of reviewing the
code.

Source code Review
results (reject
or accept),
code
comments

Objective

The activities supported by the develop phase are listed in Table 7.

UNCLASSIFIED

37

UNCLASSIFIED

Table 7: Develop Phase Activities

Activities Description Inputs Outputs Tool
Dependencies

Application code
development

Application coding Developer coding
input

Source code IDE

Infrastructure code
development

-System components and
infrastructure orchestration
coding
-Individual component
configuration script coding

Developer coding
input

Source code IDE

Security code
development

Security policy enforcement
script coding

Developer coding
input

Source code IDE

Test development Develop detailed test
procedures, test data, test
scripts, test scenario
configuration on the specific
test tool

Test plan Test procedure
document;
Test data file;
Test scripts

IDE;
Specific test tool

Database
development

Implement the data model
using data definition
language or data structure
supported by the database;
Implement triggers, views or
applicable scripts;
Implement test scripts, test
data generation scripts.

Data model Database artifacts
(including data
definition,
triggers, view
definitions, test
data, test data
generation scripts,
test scripts, etc.)

IDE or tools
come with the
database
software

Code commit Commit source code into
version control system

Source code Version controlled
source code

Source code
repository

Code commit scan Check the changes for
sensitive information before
pushing the changes to the
main repository.
If it finds suspicious content,
it notifies the developer and
blocks the commit.

Locally committed
source code

Security findings
and warnings

Source code
repository
security plugin

Code review Perform code review to all
source code. Note that pair
programming counts.

Source code Review comments Code quality
review tool

Documentation Detailed implementation
documentation

User input;
Source code

Documentation;
Auto generated
Application
Programming
Interface (API)
documentation

IDE or
document editor
or build tool

Static code scan
before commit

Scan and analyze the code
as the developer writes it.
Notify developers of
potential code weakness and
suggest remediation.

Source code;
known
weaknesses

source code
weakness findings

IDE security
plugins

Container or VM
hardening

Harden the deliverable for
production deployment

Running VM or
container

Vulnerability
report and
recommended
mitigation

Container
security tool
Security
compliance tool

UNCLASSIFIED

38

UNCLASSIFIED

4.2.3 Build
The build tools perform the tasks of building and packaging applications, services, and
microservices into artifacts. For languages like C++, building starts with compiling and linking.
The former is the act of turning source code into object code and the latter is the act of
combining object code with libraries to create an executable file. For Java Virtual Machine
(JVM) based languages, building starts with compiling to class files, then building a compressed
file such as a jar, war or ear file, which includes some metadata, and may include other files such
as icon images. For interpreted languages, such as Python or JavaScript, there is no need to
compile, but lint tools help to check for some potential errors such as syntax errors. Building
should also include generating documentation, such as Javadoc, copying files like libraries or
icons to appropriate locations, and creating a distributable file such as a tar or zip file. The build
script should also include targets for running automated unit tests.

Modern build tools can also be integrated into both an IDE and a source code repository to
enable building both during development and after committing. For those applications that use
containers, the build stage also includes a containerization tool.

The following tables list build-related tools along with their inputs and outputs.

Table 8: Build Phase Tools

Tool Features Benefits Inputs Outputs Baseline

Build tool Dependency
Management
Compile
Link (if appropriate)
Built-in lint stylistic
checking
Integration with IDE

Reduces human
mistakes
Saves time

Source code
under version
control
Artifacts

Binary
artifacts
stored in
the Artifact
repository

MVP

Lint tool Analyzes source code to
flag programming
errors, bugs, stylistic
errors, and suspicious
constructs.
Applicable to both
compiled or interpreted
languages

Improve code
readability;
Pre-code review;
Finding (syntax)
errors before
execution for
interpreted
languages

Source code or
scripts

Analyze
results

Objective

Container
builder

Build a container image
based on a build
instruction file

Container image
build automation

Container base
image;
Container build
file

OCI
compliant
container
image

MVP

https://en.wikipedia.org/wiki/Interpreted_language
https://en.wikipedia.org/wiki/Interpreted_language

UNCLASSIFIED

39

UNCLASSIFIED

Tool Features Benefits Inputs Outputs Baseline

Artifact
Repository

Binary artifact version
control;
Container registry

Separate binary
control from source
control to avoid
external access to
source control
system.

Improved build
stability by
reducing reliance
on external
repositories.

Better quality
software by
avoiding outdated
artifacts with
known issues.

Artifacts Version
controlled
artifacts

MVP

Static
Application
Security Test
(SAST) tool

SAST analyzes
application static codes,
such as source code,
byte code, binary code,
while they are in a non-
running state to detect
the conditions that
indicate code
weaknesses.

Catch code
weaknesses at an
early stage.
Continuous
assessment during
development.

Source code;
known
vulnerabilities
and weaknesses

Static code
scan report
and
recommend
ed
mitigation.

MVP

Dependency
checking /Bill
of Materials
(BOM)
checking tool

Identify vulnerabilities
in the dependent
components based on
publicly disclosed open
source vulnerabilities

Secure the overall
application;
Manage the supply
chain risk

Dependency list
or BOM list

Vulnerabili
ty report

Objective

The activities supported by the build phase are listed in Table 9.

Table 9: Build Phase Activities

Activities Description Inputs Outputs Tool
Dependencies

Build Compile and link Source code;
dependencies

Binary artifacts Build tool;
Lint tool;
Artifact repository

Static
application
security test and
scan

Perform SAST to the
software system

Source code;
known
vulnerabilities and
weaknesses

Static code
scan report and
recommended
mitigation.

SAST tool

Dependency
vulnerability
checking

Identify vulnerabilities
in the open source
dependent components

Dependency list or
BOM list

Vulnerability
report

Dependency checking /
BOM checking tool

Containerize Packages all required
components OS,
developed code,

Container base
image;
Container build file

Container
image

Container builder

UNCLASSIFIED

40

UNCLASSIFIED

libraries, etc.) into a
hardened container

Release
packaging

Package binary artifacts,
container or VM images,
infrastructure
configuration scripts,
proper test scripts,
documentation,
checksum, digital
signatures, and release
notes as a package.

Binary artifacts;
Scripts;
Documentation;
Release notes

Released
package with
checksum and
digital
signature

Release packaging tool

Store artifacts Store artifacts to the
artifact repository

Binary artifacts;
Database artifacts;
Scripts;
Documentation;
Container images

Versioned
controlled
artifacts

Artifact Repository

Build
configuration
control and audit

Track build results,
SAST and dependency
checking report;
Generate action items;
Make go/no-go decision
to the next phase

Build results;
SAST report;
Dependency
checking report

Version
controlled
build report;
Action items;
Go/no-go
decision

Team collaboration
system;
Issue tracking system;
CI/CD orchestrator

4.2.4 Test
Test tools support continuous testing across the software development lifecycle. Test activities
may include, but are not limited to, unit test, functional test, integration test, system test,
regression test, acceptance test, performance test, and variety of security tests. . Mission
programs can select their own test activities and merge several tests together based on the nature
of their software and environment. All tests start with test development, which develops detailed
test procedures, test scenarios, test scripts, and test data. Automated test can be executed by
running a set of test scripts or running a set of test scenarios on the specific test tool without
human intervention. If full automation is not possible, the highest percentage of automation is
desired. It is highly recommended to leverage emulation and simulation to test proper integration
between components such as microservices and various sensors/systems, so integration testing
can be automated as much as possible. Automation will help achieve high test coverage and
make continuous ATO practicable, as well as significantly increase the quality of delivered
software.

The components involved with the test phase are listed in the following table.

Table 10: Test Phase Tools

Tool Features Benefits Inputs Outputs Baseline

Test
development
tool

Assists test scenario, test
script, and test data
development.
The specific tool varies,
depending on the test
activity (such as unit test,

Increase the
automation and
rate of testing

Test plan test scenarios,
test scripts,
test data

MVP

UNCLASSIFIED

41

UNCLASSIFIED

Tool Features Benefits Inputs Outputs Baseline

penetration test) and the
application type (e.g., web
application, or Hadoop data
analytics)

Test data
generator

Generates test data for the
system (such as network
traffic generator, web
request generator)

Increase test
fidelity

Test scenario,
test data

Input data for
the system
under test

Objective

Test tool
suite

A set of test tools to
perform unit test, interface
test, system test, integration
test, performance test and
acceptance test of the
software system.
Generate test report
Specific tool varies
depending on the type of
tests, software application,
and programming language

Increase test
automation, speed

Test scenario,
test scripts,
test data

Test results,
test report

MVP

Test
coverage tool

Measures how much code
is exercised while the
automated tests are running

Shows the fidelity
of the test results

Application
code,
automated
tests

The
percentage of
code that is
exercised by
the tests.

MVP

Test
Management
Tool

Manages requirements,
streamlines test case design
from requirements, plans
test activities, manages test
environment, tracks test
status and results.

Increases QA
team collaboration
and streamlines
test processes.

Requirements
, test cases,
test results

Test progress,
test results
statistics

Objective

Non-security
compliance
scan

Such as Section 508
accessibility compliance

Ensures
compliance

Artifacts Compliance
report

Objective

Software
license
compliance
checker

Inventory software license;
Audit the compliance.

Software license
compliance and
software asset
management

Purchased
license info;
Software
instances

Compliance
report

Objective

Dynamic
Application
Security Test
(DAST) tool

DAST tools analyze a
running application
dynamically and can
identify runtime
vulnerabilities and
environment related issues.

Catch the dynamic
code weakness in
runtime and under
certain
environment
setting.
Identify and fix
issues during
continuous
integration.

Running
software
application;
fuzz inputs

dynamic code
scan report and
recommended
mitigation.

Objective

Interactive
Application
Security Test
(IAST) tool

Analyze code for security
vulnerabilities while the
application is run by an
auto-test, human tester, or
any activity “interacting”

Provide accurate
results for fast
triage; pinpoint
the source of
vulnerabilities

Running
application,
and operating
systems;
Fuzz inputs

Analysis
report and
recommended
mitigation.

Objective

UNCLASSIFIED

42

UNCLASSIFIED

Tool Features Benefits Inputs Outputs Baseline

with the application
functionality

Container
security tool

Container image scan
OS check

Ease the container
hardening process

Container
images or
running
containers

Vulnerability
report and
recommended
mitigation.

MVP

Container
policy
enforcement

Support for Security
Content Automation
Protocol (SCAP) and
Container configuration
policies. These policies can
be defined as needed.

Automated policy
enforcement

Policies in
SCAP form.

Compliance
report

MVP

Security
compliance
tool

Scan and report for
compliance regulations,
such as DISA Security
Technical Implementation
Guides (STIGs), NIST
800-53.

Speed up ATO
process.

Container
images.

Vulnerability
report and
recommended
mitigation.

Objective

Network
security test
tool

Simulate real-world
legitimate traffic,
distributed denial of service
(DDOS), exploits,
malware, and fuzzing.

Validate system
security; increase
attack readiness;
reduce the risk of
system
degradation.

Test
configuration

Test traffic Objective

Database test
tool suite

Tools that facilitate
database test;
It includes test data
generator, database
functional test tool,
database load test tool;

Automate or semi-
automate the
database tests

Test data;
Test scenario

Test results Objective
if using a
database

Database
security scan
and test tool

Find the database common
security vulnerabilities,
such as weak password,
known configuration risks,
missing patches;
Structured Query Language
(SQL) injection test tool;
Data access control test;
User access control test;
Denial of service test

Reduce the
security risks

Test data;
Test scenarios

Vulnerability
findings;
Recommended
mitigation
actions

Objective
if using a
database

The activities supported by the test phase are listed in Table 11. These activities happen at
different test stages.

• Development stage: unit test, SAST discussed in the build phase

• System test stage: DAST or IAST, integration test, system test

• Pre-production stage: manual security test, performance test, regression test, acceptance
test, container policy enforcement, and compliance scan

Test audit, test deployment, and configuration audit happen at all stages.

UNCLASSIFIED

43

UNCLASSIFIED

Table 11: Test Phase Activities

Activities Description Inputs Outputs Tool
Dependencies

Unit test Assist unit test script
development and unit test
execution. It is typically
language specific.

Unit test script,
individual software
unit under test (a
function, method or
an interface), test
input data, and
expected output data

Test report to
determine
whether the
individual
software unit
performs as
designed.

Test tool suite,
Test coverage
tool

Dynamic
application
security test and
scan

Perform DAST or IAST
testing to the software system

Running application
and underlying OS;
fuzz inputs

Vulnerability,
static code
weakness and/or
dynamic code
weakness report
and
recommended
mitigation

DAST tool or
IAST tool

Integration test Develops the integration test
scripts and execute the scripts
to test several software units
as a group with the interaction
between the units as the focus.

Integration test
scripts, the software
units under test, test
input data, and
expected output data

Test report about
whether the
integrated units
performed as
designed.

Test tool suite

System test System test uses a set of tools
to test the complete software
system and its interaction with
users or other external
systems.

System test scripts,
the software system
and external
dependencies, test
input data and
expected output data

Test result about
if the system
performs as
designed.

Test tool suite

Manual security
test

Such as penetration test,
which uses a set of tools and
procedures to evaluate the
security of the system by
injecting authorized simulated
cyber-attacks to the system.

CI/CD orchestrator does not
automate the test, but the test
results can be a control point
in the pipeline.

Running
application,
underlying OS, and
hosting environment

Vulnerability
report and
recommended
mitigation

Varies tools and
scripts (may
include network
security test
tool)

Performance test Ensure applications will
perform well under the
expected workload. The test
focus is on application
response time, reliability,
resource usage and scalability.

Test case, test data,
and the software
system

Performance
metrics

Test tool suite,
Test data
generator

Regression test A type of software testing to
confirm that a recent program
or code change has not
adversely affected existing
features.

Functional and non-
functional
regression test
cases; the software
system

Test report Test tool suite

UNCLASSIFIED

44

UNCLASSIFIED

Activities Description Inputs Outputs Tool
Dependencies

Acceptance test Conduct operational readiness
test of the system. It generally
includes:
Accessibility and usability test
failover and recovery test
performance, stress and
volume test
security and penetration test
interoperability test
compatibility test
supportability and
maintainability

The tested system
Supporting system
Test data

Test report Test tool suite,
Non-security
compliance scan

Container policy
enforcement

Check developed containers to
be sure they meet container
policies

Container, Policies
in SCAP form

Container
compliance
report

Container policy
enforcement

Compliance
scan

Compliance audit Artifacts;
Software instances;
System components

Compliance
reports

Non-security
compliance
scan;
Software license
compliance
checker;
Security
compliance tool

Test audit Test audit keeps who performs
what test at what time and test
results in records

Test activity and test
results

Test audit log Test
management
tool

Test deployment Deploy application and set up
testing environment using
Infrastructure as Code

Artifacts
(application
artifacts, test code)
Infrastructure as
Code

The
environment
ready to run
tests

Configuration
automation tool;
IaC

Database
functional test

Perform unit test and
functional test to database to
verify the data definition,
triggers, constrains are
implemented as expected

Test data Test results Database test
tools

Database non-
functional test

Conduct performance test,
load test, and stress test;
Conduct failover test

Test data;
Test scenarios

Test results Database test
tools

Database
security test

Perform security scan;
Security test

Test data;
Test scenarios

Test results Vulnerability
findings;
Recommended
mitigation
actions

Test
configuration
control and audit

Track test and security scan
results;
Generate action items;
Make go/no-go decision to the
next phase.

Test results;
Security scan and
compliance scan
report

Version
controlled test
results;
Action items;
Go/no-go
decision

Team
collaboration
system;
Issue tracking
system;
CI/CD
orchestrator

UNCLASSIFIED

45

UNCLASSIFIED

Activities Description Inputs Outputs Tool
Dependencies

(There may be several
iterations for several tests
across stages)

4.2.5 Release and Deliver
In the release and deliver phase, the software artifacts are digitally signed to verify that they have
passed build, all tests, and security scans. They are then delivered to the artifact repository. The
content of the artifacts depends on the application. It may include, but is not limited to, container
images, VM images, binary executables (such as jar, war, ear files), test results, security scan
results, and Infrastructure as Code deployment scripts. Artifacts will be tagged with the release
tag if GO release decision is made based on the configuration audit results. The artifacts with the
release tag are delivered to production.

Table 12: Release and Deliver Phase Tools

Tool Features Benefits Inputs Outputs Baseline

Release
packaging
tool

Package binary
artifacts, container or
VM images,
infrastructure
configuration scripts,
proper test scripts,
documentation, release
notes as a package;
generate checksum and
digital signature for the
package.

The package may be
prepared for a specific
installer or it is a self-
extracting installer
itself.

Release package
(such as a bundle
of artifacts, self-
extracting
software installer,
software tar file,
etc.)

Binary artifacts,
base containers
or VM images,
infrastructure
configuration
scripts, proper
test scripts,
documentation,
release notes

Release
package with
checksum
and digital
signature (a
bundle of
artifacts, such
as a self-
extracting
software
installer, or a
tar file, etc.)

MVP if
using
VMs

The mission program could have more than one artifact repository, though more likely there is a
centralized one and tags separate artifact types. One artifact repository (or set of tags) is used in
the build stage to store build results. The test deployment activity can fetch the artifacts from the
build stage artifact repository to deploy the application into various environments (development,
test, or pre-production). Another artifact repository (or set of tags) may be used by the
production environment, which is the one that the store artifacts stage uses to push the final
deliverables to production. The production deployment will get all the artifacts from the
production artifact repository to deploy the application.

Some mission program application systems have geographically distributed operational regions
across the country or even overseas. In order to increase deployment velocity, a remote
operational region may have its own local artifact repository that replicates the artifact repository

UNCLASSIFIED

46

UNCLASSIFIED

completely or partially. During release, a new artifact is pushed into the artifact repository and
then replicated to other regional artifact repositories.

The activities supported by the release and deliver phase are listed below.

Table 13: Release and Deliver Phase Activities

Activities Description Inputs Outputs Tool
Dependency

Release go / no-
go decision

This is part of configuration audit;
Decision on whether to release artifacts to
the artifact repository for the production
environment.

Design
documentation;
Test reports;
Security test
and scan
reports;
Artifacts

go / no-go
decision;
Artifacts
are tagged
with
release tag
if go
decision is
made

CI/CD
Orchestrator

Deliver released
artifacts

Push released artifacts to the artifact
repository

The release
package

New
release in
the artifact
repository

Artifacts
repository

Artifacts
replication

Replicate newly release artifacts to all
regional artifact repositories

Artifacts Artifacts in
all regional
artifact
repositories

Artifacts
repositories
(release,
regional)

4.3 Production Operation Tools and Activities
The production operations tools provide the capability to deploy artifacts, including containers
and VM images, to the production environment, and to monitor their operations. For Cloud-
native applications, it is recommended to use containers whenever possible over virtual machines
due to the baked-in security provided by the Sidecar Container Security Stack.

4.3.1 Deploy
The tools used in deploy phase are environment and deployment mode dependent.

4.3.1.1 Virtual Machine deployment

While it is highly recommended to leverage containers for new system design and
development, if the application is deployed as a VM, the virtualization manager in the
hosting environment is the key component with which IaC will interface to deploy and
configure the application system. The virtualization manager manages the virtual compute,
storage and network resources. In some hosting environments, such as a general-purpose
cloud, the virtualization manager also provides some security capabilities, such as micro-
segmentation, which creates security zones to isolate VMs from one another and secure them
individually. Several capabilities of the virtualization manager are keys to the success of
mission application runtime operation and security, such as health checking, virtual resource

UNCLASSIFIED

47

UNCLASSIFIED

monitoring, and scaling. The application production environment infrastructure has to
leverage these capabilities in its architecture and configuration.

The use of “clones” from a master image library enables VMs to be created quickly. A clone
is made from a snapshot of the master image. The use of clones also enables the concept of
immutable infrastructure by pushing updated, clean images to the VM each time it is started.
Only the master image needs to be patched or updated with the latest developed code; each
running image is restarted to pick up these changes.

4.3.1.2 Container deployment

A container manager provides capabilities that check for new versions of containers, deploys
the containers to the production environment, and performs post-deployment checkout.

The container manager consists of an OCI-compliant container runtime and a CNCF-certified
Kubernetes, which is an orchestration tool for managing microservices or containerized
applications across a cluster of nodes. The nodes could be bare metal servers or VMs. The
container manager may be owned by a mission program or provided by the cloud hosting
environment. It simplifies container management tasks, such as instantiation, configuration,
scaling, monitoring, and rolling updates. The CNCF-certified Kubernetes interacts with the
underlying virtualization manager in the cloud environment to ensure each node’s health and
performance, and scale it as needed. This scaling includes container scaling within the
CNCF-certified Kubernetes cluster, but when running in a cloud, it also includes the ability
to auto-scale number of nodes in a cluster by adding or deleting VMs.

The following tables list deployment-related tools and their inputs and outputs.

Table 14: Deploy Phase Tools

Tool Features Benefits Inputs Outputs Baseline

Virtualization
Manager

VM instance
management
VM resource monitoring
(provided on hosting
environment)

Centralized VM
instantiation,
scaling, and
monitoring

VM instance
specification
and monitoring
policy

Running VM MVP if using
VMs

CNCF-
certified
Kubernetes

Container grouping using
pods
Health checks and self-
healing
Horizontal infrastructure
scaling
Container auto-scalability
Domain Name Service
(DNS) management
Load balancing
Rolling update or
rollback
Resource monitoring and
logging

Simplify
operations by
deployment and
update
automation

Scale resources
and applications
in real time

Cost savings by
optimizing
infrastructure
resources

Container
instance
specification
and monitoring
policy

Running
container

MVP

UNCLASSIFIED

48

UNCLASSIFIED

Tool Features Benefits Inputs Outputs Baseline

Data masking
tool

Shield personally
identifiable information
or other confidential data

Provide data
privacy;
Reduce the risk
of data loss
during data
breach

Original data Masked data Objective if
database
contains
sensitive data

Database
encryption
tool

Encrypt data at rest and
in transit

Provide data
privacy and
security;
Prevent data loss

Original data Encrypted data MVP if
database
contains
highly
sensitive data

Database
automation
tool

Automate database tasks,
such as deployments,
upgrades, discovering
and troubleshooting
anomalies, recovering
from failures, topology
changes, running
backups, verifying data
integrity, and scaling.

Simplify
database
operations and
reduce human
errors

Database
artifacts;
Data;
Running status
and events

Status report;
Warnings;
alerts

Objective if
using a
database

Configuration
automation
tools

Execute the configuration
scripts to provision the
infrastructure, security
policy, environment, and
the application system
components.

Configuration
automation
Consistent
provisioning

Infrastructure
configuration
scripts
Infrastructure
configuration
data

Provisioned
deployment
infrastructure

MVP

Service mesh Ability to create a
network of deployed
services with load
balancing, service-to-
service authentication,
and monitoring.

Support for
microservice
interactions.

Control plane:
service
communication
routing
policies,
authentication
certificates.
Data plane:
service
communication
data

Control plane:
service status
reports
Data plane:
routed service
communication
data

MVP

The activities supported by the deploy phase are listed in Table 15.

Table 15: Deploy Phase Activities

Activities Description Inputs Outputs Tool
Dependency

Artifact download Download newly release artifacts from the
artifact repository

Artifact
download
request

Requested
artifacts

Artifact
repository

Infrastructure
provisioning
automation

Infrastructure systems auto provisioning
(such as software defined networking,
firewalls, DNS, auditing and logging
system, user/group permissions, etc.)

Infrastructure
configuration
scripts /
recipes /
manifests /
playbooks

Provisioned
and
configured
infrastructure

Configuration
automation
tools; IaC

UNCLASSIFIED

49

UNCLASSIFIED

Activities Description Inputs Outputs Tool
Dependency

Create linked
clone of VM
master image

Instantiate VM by creating a link clone of
parent VM with master image

VM parent
New VM
instance
parameters

New VM
instance

Virtualization
Manager

Deliver container
to container
registry

Upload the hardened container and
associated artifacts to the container registry

Hardened
container

New
container
instance

CNCF-
certified
Kubernetes;
Artifact
repository
container
registry

Post-deployment
security scan

System and infrastructure security scan Access to
system
components
and
infrastructure
components

Security
vulnerability
findings

Security
compliance
tool

Post-deployment
checkout

Run automated test to make sure the
important functions of system are working

Smoke test
scenarios and
test scripts

Test results Test scripts

Database
installation and
database artifact
deployment

Database software installation; Cluster or
high availability setup;
Database artifacts deployment and data
loading

Artifacts in
the
repository;
data

Running
database
system

Artifact
repository;
Database
automation
tool;
Data masking
or encryption
tool if needed

4.3.2 Operate
The Operate phase uses tools for system scaling, load balancing, and backup.

Load balancing monitors resource consumption and demand, and then distributes the workloads
across the system resources. Scaling helps dynamic resource allocation based on demand. Both
virtualization manager and CNCF-certified Kubernetes support load balancing and scaling
capabilities. CNCF-certified Kubernetes handles the load balancing and scaling at the container
level. The virtualization manager works at the VM level.

Application deployment must have proper load balancing and scaling policies configured with
the virtualization manager or the CNCF-certified Kubernetes based on VM deployment or
container deployment respectively. During runtime, the management layer will continuously
monitor the resources. If the configured threshold is met (for example if memory or Central
Processing Unit (CPU) usage meets a pre-set threshold), then the system triggers the load
balancing or scaling action automatically. Auto-scaling must be able to scale both up and down.

UNCLASSIFIED

50

UNCLASSIFIED

Table 16: Operate Phase Tools

Tool Features Benefits Inputs Outputs Baseline

Backup
management

Data backup
System components (VM
or container) snapshot

Improve
failure
recovery

Access to the
backup source

Backup data
System VM or
container snapshot

MVP

Operations
dashboard

Provide operators a visual
view of operations status,
alerts, and actions.

Improve
operations
management

All operational
monitoring
status, alerts,
and
recommended
actions

Dashboard display Objective

The activities supported by the operate phase are listed in the table below.

Table 17: Operate Phase Activities

Activities Description Inputs Outputs Tool
Dependency

Backup Data backup;
System backup

Access to backup
system

Backup data or
image

Backup
management;
Database
automation tool

Scale Scale manages
VMs/containers as a
group. The number of
VMs/containers in the
group can be
dynamically changed
based on the demand
and policy.

Real-time demand and
VM/container
performance measures
Scale policy (demand
or Key Performance
Indicator
(KPI)threshold;
minimum, desired, and
maximum number of
VMs/containers)

Optimized
resource
allocation

VM management
capability on the
hosting
environment;

Container
management on the
hosting environment

Load balancing Load balancing
equalizes the resource
utilization

Load balance policy
Real time traffic load
and VM/container
performance measures

Balanced
resource
utilization

VM management
capability on the
hosting
environment;

Container
management on the
hosting environment

4.3.3 Monitor
In the monitor phase, tools are utilized to collect and assess key information about the use of the
application to discover trends and identify problem areas. Monitoring spans the underlying
hardware resources, network transport, applications / microservices, containers, interfaces,
normal and anomalous endpoint behavior, and security event log analysis.

It also includes behavior and signature-based detection in the runtime environment. All these
security capabilities are mapped against the NIST controls and follow NIST Special Publication
800-190 Application Container Security Guide [12] for continuous compliance.

UNCLASSIFIED

51

UNCLASSIFIED

Table 18: Monitor Phase Tools

Tool Features Benefits Inputs Outputs Baseline

Logging Logging events for all
user, network, application,
and data activities

Assist
troubleshooting
the issues.
Assist
detection of
advanced
persistent
threats and
forensics.

All user,
network,
application,
and data
activities

Event logs MVP

Log
aggregator

Filter log files for events
of interest (e.g., security),
and transform into
canonical format

 Logs Aggregated,
filtered,
formatted event
log

MVP

Log
analysis &
auditing

Analyze and audit to
detect malicious threats /
activity;
Automated alerting and
workflows for response
Forensics for damage
assessment

 Logs

Alert messages,
emails, etc.
Remediation
report and log

MVP

Operations
monitoring

Report various
performance metrics such
as resource utilization
rates, number of
concurrent user sessions,
and Input/Output (IO)
rates;
Provide dashboards to
display performance;
Alert performance issues
Establish a baseline for
comparison

Improve
operations
continuity
Identify the
area to improve
Better end-user
experience

Performance
KPI and
Service Level
Agreement
(SLA)

Performance
statistics
Performance
alerts

MVP

Information
Security
Continuous
Monitoring
(ISCM)

Monitor network security
Monitor personnel activity
Monitor configuration
changes
Perform periodical
security scan to all system
components
Monitor the IT assets and
detect deviations from
security, fault tolerance,
performance best
practices.
Monitor and analyze log
files
Audit IT asset’s
configuration compliance
Detect and block
malicious code

Detect
unauthorized
personnel,
connections,
devices, and
software
Identify
cybersecurity
vulnerability
Detect security
and
compliance
violation
Verify the
effectiveness
of protective
measures

IT asset
Network
Personnel
activities
Known
vulnerabilities

Vulnerabilities
Incompliance
Findings,
assessments and
recommendations

MVP

UNCLASSIFIED

52

UNCLASSIFIED

Tool Features Benefits Inputs Outputs Baseline

Continuous security
vulnerability assessments
and scans
Provide browse, filter,
search, visualize, analysis
capabilities
Generate findings,
assessments and
recommendations.
Provide recommendations
and/or tools for
remediating any non-
compliant IT asset and/or
IT workload.

Alerting
and
notification

Notify security teams
and/or administrators
about detected events.
Support automatic
remediation of high-
priority time-critical
events.

Improve
visibility of
system events
Reduce system
downtime
Improve
customer
service

Logs,
monitoring
data.
Support
automatic
remediation
of high-
priority time-
critical
events.

Alert messages,
emails, etc.
Remediation
report
Issue ticket

MVP

Database
monitoring
tool

Baseline database
performance and database
traffic;
Detect anomalies

Improve
database
operations
continuity

Running
database

Logs;
Warnings and
alerts

Objective if
using a
database

Database
security
audit tool

Perform user access and
data access audit;
Detect anomalies from
events correlation;
Detect SQL injection;
Generate alert

Enhance
database
security

Running
database

Audit logs;
Warnings and
alerts

MVP if using
a database

The activities supported by the monitor phase are listed in Table 19.

Table 19: Monitor Phase Activities

Activities Description Inputs Outputs Tool
Dependencies

Logging Log system events All user,
network,
application, and
data activities

Logs Logging

Log analysis &
auditing

Filter or aggregate logs;
Analyze and correlate logs

Logs Alerts and
remediation report

Log aggregator
Log analysis &
auditing

System
performance
monitoring

Monitor system hardware,
software, database, and
network performance;
Baselining system
performance;

Running system Performance KPI
measures;
Recommended
actions;
Warnings or alerts

Operation
monitoring
Issue tracking
system; Alerting
and notification;

UNCLASSIFIED

53

UNCLASSIFIED

Detect anomalies Operations
dashboard

System Security
monitoring

Monitor security of all system
components
Security vulnerability
assessment
System security compliance
scan

Running system Vulnerabilities;
Incompliance
Findings; assessments
and
recommendations;
Warnings and alerts.

ISCM;
Issue tracking
system;
Alerting and
notification;
Operations
dashboard

Asset Inventory Inventory system IT assets IT assets Asset inventory Inventory
Management;

System
configuration
monitoring

System configuration
(infrastructure components
and software) compliance
checking, analysis, and
reporting

Running system
configuration;
Configuration
baseline

Compliance report;
Recommended
actions;
Warnings and alerts

ISCM;
Issue tracking
system; Alerting
and notification;
Operations
dashboard

Database
monitoring and
security auditing

Database performance and
activities monitoring and
auditing

Database traffic,
event, and
activities

Logs;
Warnings and alerts

Database
monitoring tool;
Database
security audit
tool;
Issue tracking
system;
Alerting and
notification;
Operations
dashboard

4.4 Security Tools and Activities Summary
Security is not a separate phase of the DevSecOps lifecycle; rather security activities occur in all
phases. This DevSecOps security practice facilitates automated risk characterization, monitoring,
and mitigation across the application lifecycle. Table 20 summarizes the security activities of all
phases.

Table 20: Security Activities Summary

Activities Phase Activities
Table

Reference

Tool Dependencies Tool Table
Reference

Threat modeling Plan Table 4 Threat modeling tool Table 3

Security code
development

Develop Table 7 IDE Table 6

Static code scan before
commit

Develop Table 7 IDE security plugins Table 6

Code commit scan Develop Table 7 Source code repository security
plugin

Table 6

Container or virtual
machine hardening

Develop Table 7 Container security tool
Security compliance tool

Table 10

Static application security
test and scan

Build Table 9 SAST tool Table 8

UNCLASSIFIED

54

UNCLASSIFIED

Dependency
vulnerability checking

Build Table 9 Dependency checking / BOM
checking tool

Table 8

Dynamic application
security test and scan

Test Table 11 DAST tool or
IAST tool

Table 10

Manual security testing
(such as penetration test)

Test Table 11 Varies tools and scripts (may
include network security test tool)

Table 10

Container policy
enforcement

Test Table 11 Container policy enforcement Table 10

Post-deployment security
scan

Deploy Table 15 Security compliance tool Table 10

System Security
monitoring

Monitor Table 19 Information Security Continuous
Monitoring (ISCM)

Table 18

4.5 Configuration Management Tools and Activities Summary
Configuration management plays a key role in DevSecOps practice. It ensures the configuration
of a software system’s infrastructure, software components, and functionalities are not only
known initially but also knowable and well controlled throughout the DevSecOps lifecycle.

Configuration management consists of three sets of activities:

• Configuration identification: identify the configuration items. This can be done manually
or with assistance from a discovery tool. The configuration items include infrastructure
components, COTS or open source software components used in the system, documented
software design, features, software code or scripts, artifacts, etc.

• Configuration control: control the changes of the configuration items. Each configuration
item has its own attributes, such as model number, version, configuration setup, license,
etc. The CMDB, source code repository, and artifact repository are tools to track and
control the changes. The source code repository is used primarily during development.
The other two are used in both development and operations.

• Configuration verification and audit: verify that the configuration items meet the
documented requirements and design. Configuration verification and audit are control
gates along a pipeline to control the go/no-go decision to the next phase.

Table 21: Configuration Management Activities Summary

Activities Phase Activities Table
Reference

Tool Dependencies Tool Table
Reference

Configuration
management
planning

Plan Table 4 Team collaboration system;
Issue tracking system

Table 3

Configuration
identification

Plan Table 4 CMDB Table 3

Design review Plan Table 4 Team collaboration system Table 3

Documentation
version control

Plan Table 4 Team collaboration system Table 3

Code review Develop Table 7 Code quality review tool Table 6

UNCLASSIFIED

55

UNCLASSIFIED

Activities Phase Activities Table
Reference

Tool Dependencies Tool Table
Reference

Code Commit Develop Table 7 Source code repository Table 6

Store artifacts Build Table 9 Artifact repository Table 8

Build phase
configuration control
and audit

Build Table 9 Team collaboration system;
Issue tracking system
CI/CD orchestrator

Table 3
Table 5

Test phase
configuration control
and audit

Test Table 11 Team collaboration system;
Issue tracking system
CI/CD orchestrator

Table 3
Table 5

Release go / no-go
decision

Release Table 13 CI/CD orchestrator Table 5

Infrastructure
provisioning
automation

Deploy Table 15 Configuration automation
tool

Table 14

Post-deployment
security scan

Deploy Table 15 Security compliance tool Table 10

Post-deployment
checkout

Deploy Table 15 Test scripts

Asset inventory Monitor Table 19 Asset inventory tool Table 18

System performance
monitoring

Monitor Table 19 Operation monitoring
Issue tracking system;
Alerting and notification;
Operations dashboard

Table 3
Table 16
Table 18

System configuration
monitoring

Monitor Table 19 ISCM;
Issue tracking system;
Alerting and notification;
Operations dashboard

Table 3
Table 16
Table 18

4.6 Database Management Tools and Activities Summary
Databases are commonly used in the DoD software systems. They hold some of the most critical
information of an enterprise or a mission and are typically the center piece of the software
system. Data security and privacy protection are paramount to enterprises and missions.
Relational databases continue to be a prime target for data thieves, and security vulnerabilities
are compound by adoption of big data platforms, such as Hadoop, NoSQL databases, and
Database as a Service (DBaaS) in the cloud. Here we discuss some database activities throughout
the DevSecOps lifecycle to improve database security and operations.

In development phases, database design, development, and testing activities generate database
artifacts, which are data models, database schema files, trigger definitions, view definition, test
data, test data generation scripts, test scripts, etc. These database artifacts must be under
configuration management control. During test phase, database functional test is like application
code unit test and functional test to validate the schema, triggers, and data compliance. The non-
functional test includes load testing, stress test, and performance test. The security test focuses
on vulnerability scan, user authentication and authorization, unauthorized access to data, data
encryption, privilege elevation, SQL injection, and denial of service.

UNCLASSIFIED

56

UNCLASSIFIED

During operations, the deployment and operational activities can be automated via database
automation tools. The continuous monitoring is achieved using database monitoring tool and
security audit tool.

Table 22 summarizes the database activities of all phases.

Table 22: Database Management Activities Summary

Activities Phase Activities Table
Reference

Tool Dependencies Tool Table
Reference

Database design Plan Table 4 Data modeling tool Table 3

Database development Develop Table 7 IDE or tools come with the
database software

Table 6

Code review (database
schemas, codes)

Develop Table 7 Code quality review tool Table 6

Code Commit (database
schemas, codes

Develop Table 7 Source code repository Table 6

Store artifacts (database
artifacts)

Build Table 9 Artifact repository Table 8

Database functional test Test Table 11 Database test tool Table 10

Database non-functional
test

Test Table 11 Database test tool Table 10

Database security test Test Table 11 Database security test tool Table 10

Database installation and
database artifact
deployment

Test and
Deploy

Table 11
Table 15

Artifact repository;
Database automation tool;
Data masking or encryption
tool if needed

Table 8
Table 14

Backup Operate Table 17 Database automation tool Table 14

Database monitoring and
security auditing

Monitor Table 19 Database monitoring tool;
Database security audit tool

Table 18

UNCLASSIFIED

57

UNCLASSIFIED

5 DoD Enterprise DevSecOps Container Service
The DoD Enterprise DevSecOps Container Service creates DevSecOps hardened containers and
provides hardened container access service to DoD programs to instantiate their own DevSecOps
ecosystem.

Figure 10: DoD Enterprise DevSecOps Container Service Architecture

Figure 10 illustrates the DoD Enterprise DevSecOps Container Service architecture. It contains a
DoD Enterprise DevSecOps Container Factory and a DoD Centralized Artifact Repository
(DCAR). The Container Factory takes public container images as input and automates the
container hardening process to produce the hardened container images. The DCAR stores the
hardened container images and allows DoD programs access these images.

5.1 DoD Enterprise DevSecOps Container Factory
The Container Factory produces the hardened containers of DevSecOps tools. It is imperative for
the Container Factory to automate its hardening process as much as possible. It does this by
leveraging CI/CD pipelines in an instance of the software factory specifically configured for
hardening of DevSecOps tool containers.

5.1.1 DoD Hardened Containers
A DoD hardened container is an Open Container Image (OCI) compliant image that is secured
and made compliant with the DoD Container Hardening Security Requirements Guide [6].

UNCLASSIFIED

58

UNCLASSIFIED

Container images should adhere to the OCI Image Format Specification to ensure portability.
Each hardened container includes the “global configuration”, which includes all security
hardening configuration. The packaged container is tagged with integrity metadata, such as a
digital signature or a digital hash. Tags may be implemented as metadata bound to the object, or
as attributes in a file associated with the object. Some configuration values can be changed for
local use, such as the DNS location. These “local configuration” values are outside the scope of
the integrity tag, and do not “break” the chain of trust for the hardened container.

Artifacts related to the hardened container should include the Information Assurance (IA)
controls that the hardened container has successfully addressed, so that users of the container
know which controls they can inherit, versus which controls they must address. This capability
may not exist in the MVP, but it is an objective that enables reciprocity.

The Hardened Container Factory produces following types of containers:

• Hardened containers of DevSecOps CI/CD pipeline tools

• Sidecar Container Security Stack (see details in Section 6.4.4) containers to be used in
runtime environments for container security

• Common containers (such as OS, database, web servers, etc.) to be used as a program
development baseline

5.1.2 Container Hardening Process
The Container hardening process, including required documentation, sustainment of the
hardened containers, and cybersecurity requirements, is fully described in the DoD Enterprise
DevSecOps Initiative Hardening Containers [13]. The basic process is depicted in Figure 11.

Figure 11: Major Steps in the Container Hardening Process

5.1.2.1 Select the Container Base Image

A base image is a container image that comes from a vendor or an open source community; it is
used as the starting point to create a hardened container image. Use the base image without
creating forks to enable direct coupling with its updates. The container should be built starting
with the respective DoD hardened base OS STIG image.

Select the container
base image Harden the container Store the hardened

container

DocumentationContinuous
EngineeringCybersecurity

UNCLASSIFIED

59

UNCLASSIFIED

5.1.2.2 Harden the Container

The Container Factory uses a set of instructions given in [13] to harden the container to mitigate
findings and ensure proper DoD compliance. Reuse the instructions as much as possible between
versions so that the hardening will be consistent across versions. It is possible that new versions
bring new features, which may require additional hardening.

The DoD Centralized Container Source Code Repository (DCCSCR) is used to store instruction
files to build container images, associated checksums, and various documentation. The source
code repository is centrally hosted so hardeners can store their code and leverage a CI/CD
pipeline (Container Factory). This is what feeds the container hardening process and DCAR
repository.

Use the CI/CD orchestration tool; download the DCCSCR folder content into the pipeline and
use the Instructions file to build the container.

The CI/CD pipeline will then run the required Container Hardening Scanners, scanning the
container image. Based on the findings of the Container Hardening Scanners, add instructions to
mitigate the findings as needed. Rebuild and rescan until findings are mitigated or accepted.

5.1.2.3 Store the Hardened Container

The DCAR is used to store the hardened containers, associated checksums, and various
documentation. This repository will be centrally hosted. Each container will have its own folder
in the DCAR. Subfolders should be used for versioning.

Store the hardened container and checksum inside the DCAR. It will be tagged as “pre-
production” as well until the artifact receives an ATO, in which case it will then be tagged for
“production”.

5.1.2.4 Documentation

Content and documentation provided for the hardened container will include:

• A description of the container, how to deploy it, the functional capabilities it provides,
and its interfaces.

• Scripts, including the instructions file for building the container, and related
configuration files for deploying and scaling the hardened image or container

• Security test results including findings, false positives, and a recommended mitigation
plan.

• Accepted risks, including a Plan of Action and Milestones (POA&M) for critical and
high findings that are not yet resolved.

• Change log of significant changes since the last version.

• Human-readable licenses for all products are included within the container. COTS license
keys will not be included, and they will need to be acquired separately.

UNCLASSIFIED

60

UNCLASSIFIED

5.1.2.5 Continuous Engineering

The hardened container factory CI/CD pipeline searches for and downloads new base images
that are posted by the vendor or in an open source community repository and runs the steps in the
Section 5.1.2.2. These steps are triggered automatically, as soon as a new image is released into
the open source repository. If the build passes all scans, it should automatically store the new
container into DCAR, where it will be tagged as “pre-production”. It also automatically notifies
the team if a build fails to pass any of the scans.

5.1.2.6 Cybersecurity

The hardened containers produced by the factory should meet the related cybersecurity
requirements, which include NIST Special Publication (SP) 800-53 [14], NIST SP 800-37 [15],
the DoD DISA Security Technical Implementation Guides (STIGs) and Security Requirements
Guides (SRGs), and industry best practices.

5.2 DoD Centralized Artifact Repository
The DCAR holds the DoD hardened container images that the DoD Enterprise DevSecOps
Container Factory produces. DoD program DevSecOps teams can utilize these to instantiate their
own DevSecOps ecosystem and software factory. The DCAR also holds the DoD hardened
containers for base operating systems, web servers, application servers, databases, API gateways,
message buses, and additional enterprise capabilities for use by DoD program software teams as
a program system deployment baseline. Separate hardened container images are created for
different versions of base images. DCAR hardened container images are version controlled.
These hardened containers, along with security accreditation reciprocity, greatly simplify and
speed the process of obtaining an Approval to Connect (ATC) or Authority to Operate (ATO).

The DCAR provides the capability to allow DoD programs (including approved DoD
contractors) to search, list information about, and download artifacts from the repository for DoD
software development on the approved environment.

UNCLASSIFIED

61

UNCLASSIFIED

6 DevSecOps Ecosystem Reference Designs
This section will discuss two software factory reference designs. One is based on the DoD
Enterprise DevSecOps Container Service offering to create a software factory using DevSecOps
tool hardened containers from DCAR. The other is based on DoD authorized cloud DevSecOps
service offerings as provided by a CSP.

This section also discusses secure operations for containerized applications in a production
environment by leveraging container security tools in the DCAR.

6.1 Containerized Software Factory
A containerized software factory can be instantiated using a set of DevSecOps hardened
containers that are offered in the DCAR. These enterprise containers are preconfigured and
secured to reduce the certification and accreditation burden and are often available as a
predetermined pattern or pipeline that will need limited or no configuration. Figure 12 illustrates
a containerized software factory reference design. The software factory is built on an underlying
container orchestration layer and a host environment. It produces DoD applications as the
product. These applications use different sets of hardened containers from the DCAR than the
ones used to create the software factory.

DoD programs may have already implemented a DevSecOps platform. One of the pain points is
sustaining that platform. It is highly recommended that, as incremental updates are made to the
existing platform, the program migrates capabilities to the DoD Enterprise DevSecOps hardened
containers. For those cases where a DoD Enterprise hardened container is not available, or
requires a custom policy, the program in conjunction with the DoD Enterprise DevSecOps
program office is encouraged to create, sustain, and deliver the hardened container to the DCAR.

UNCLASSIFIED

62

UNCLASSIFIED

Figure 12: Containerized Software Factory Reference Design

6.1.1 Hosting Environment
The reference design does not restrict the software factory hosting environment, which could be
DoD-approved Cloud Service Providers, DoD data centers or even on-premises servers. The

UNCLASSIFIED

63

UNCLASSIFIED

hosting environment provides compute, storage, and network resources in either physical or
virtual form.

6.1.2 Container Orchestration
In order to support containerized software factory tools, the underlying container orchestration
must use CNCF certified Kubernetes and support OCI compliant containers. CNCF-certified
Kubernetes orchestrates containers, interacts with underlying hosting environment resources, and
coordinates clusters of nodes at scale in development, testing and pre-production in an efficient
manner. There are two options for the container orchestration layer as illustrated in Figure 13.

Figure 13: DevSecOps Platform Options

In Option A, it is the mission program’s responsibility to build and maintain the container
orchestration layer (CNCF-certified Kubernetes) using COTS solutions. The container
orchestration layer can be deployed on top of a DoD authorized cloud environment, a DoD data
center, or on bare metal servers. The container orchestration system components are subject to
monitoring and security control under the DoD policy in that hosting environment, such as the
DoD Cloud Computing Security Requirements Guide (SRG) [2] and DISA’s Secure Cloud
Computing Architecture (SCCA) [3] for the cloud environment.

In Option B, the mission program uses a CSP container service, which must have a DoD
provisional authorization and must be based on CNCF-certified Kubernetes.

6.1.3 Software Factory Using Hardened Containers
The software factory leverages technologies and tools to automate the CI/CD pipeline processes
defined in the DevSecOps lifecycle plan phase. There are no “one size fits all” or hard rules

UNCLASSIFIED

64

UNCLASSIFIED

about what CI/CD processes should look like and what tools must be used. Each software team
needs to embrace the DevSecOps culture and define its processes that suit its software system
architectural choices. The tool chain selection is specific to the software programming language
choices, application type, tasks in each software lifecycle phase, and the system deployment
platform.

Software factory building itself follows the DevSecOps philosophy and goes through its own
design, instantiate, verify, operate and monitor phases. It evolves through the application
lifecycle iteration. Figure 14 illustrates the software factory phases, activities, and the
relationship with the application lifecycle. Security must be applied across the software factory
phases. Sidecar Container Security Stack (SCSS) discussed in 6.4.4 can be used for software
factory runtime cybersecurity monitoring.

Figure 14: Software Factory Phases in the Application Lifecycle

Figure 12 is a software factory reference design. It includes the tools and process workflows to
develop, build, test, secure, release, and deliver software application for production deployment.
All the tools are based on the DoD enterprise DevSecOps hardened containers. Committing code
into the code repository kicks off the automated factory CI/CD pipeline workflow. The CI/CD
orchestrator executes the workflow by coordinating different tools to perform various tasks.
Some tasks are completed by a set of DevSecOps tools, such as build, static code analysis, unit
test, publish artifacts, build container image, etc. Other tasks may need assistance from
underlying container orchestration layer, such as deploy application to test, pre-production, and
final production environments. Some test and security tasks may need human involvement.

6.1.4 DoD Applications
The term “DoD Application” refers to a DoD software program hosted by an information system
[16], which spreads widely from legacy monolithic infrastructure-dependent applications to

UNCLASSIFIED

65

UNCLASSIFIED

modern modular infrastructure-agnostic applications. Most systems are in brownfield with
legacy applications or mixed legacy and modern applications. Programs should consider the
nature of their application and the deployment environment when designing their software
factory. It is recommended to leverage the Strangler Pattern [17] [18] to refactor legacy
applications to modern microservices/containerized applications.

• DoD application environments at all phases (development, test, pre-production,
production) are subject to security control from DoD common security services.

• While refactoring legacy code or writing new code, it is highly recommended to leverage
the DoD hardened containers or hardening scripts to facilitate the application’s ATO.

6.2 Software Factory using Cloud DevSecOps Services
The DoD authorized cloud may already or will soon offer DevSecOps services, such as code
repository, artifact repository, build service, code deploy service, etc. Programs should consider
using these native managed services as alternatives to self-built and self-maintained DevSecOps
tool sets, but they should understand that using them may lead to vendor lock-in with the CSP.
The CSP is responsible for maintaining the service offering and the DoD Provisional
Authorization (PA) for each service. The program still needs to follow the software factory
lifecycle and performs the design, DevSecOps service selection instead of tool selection, CI/CD
pipeline process workflow automation, verify the workflows, operates and monitors the
workflows.

Another consideration is that the CSP may not offer a full solution set. For the capability that a
DevSecOps service with a DoD PA is not available, the corresponding DoD Enterprise hardened
container that provides the proper capability should be used. A CNCF-certified Kubernetes
container orchestration service is required for container runtime. Figure 15: Software Factory
illustrates a software factory using both cloud DevSecOps services and self-maintained security
tools.

UNCLASSIFIED

66

UNCLASSIFIED

Figure 15: Software Factory using Cloud DevSecOps Services

6.3 Serverless Support
So-called “serverless computing” is becoming more popular in the DoD, and it is being used
extensively in industry. This is a kind of Platform as a Service (PaaS) that is sometimes called
Function as a Service (FaaS). Despite the “serverless” moniker, a FaaS still needs servers, but
developers don’t have to worry about the servers, but rather how to deploy the code to them, how
to set up autoscaling, and other deployment tasks. This frees the developers to focus on the code.

Figure 16 illustrates that a FaaS can reduce development complexity and increase efficiency over
an Infrastructure as a Service (IaaS), a Containers as a Service (CaaS), or some Platform as a
Service (PaaS) offerings. Although a Software as a Service (SaaS) offering is even more
efficient, and good to use when it meets requirements, a SaaS is typically focused on only a few
capabilities, and cannot provide the flexibility the DoD needs to develop custom applications. A
good FaaS, on the other hand, does provide that flexibility, although some applications will need
the even greater flexibility of an IaaS.

UNCLASSIFIED

67

UNCLASSIFIED

Figure 16: Operational Efficiency

The FaaS concept has made its way into the Kubernetes environment. The basic concept is to
hand the FaaS some code, then the FaaS will build an image from the code and start it running on
Kubernetes.

The FaaS must have these features:

1) Build – builds containers from source code

a) Uses container images as the deployment unit

b) Given source code, build the code and create a container to house it

2) Serving – runs the containers created by Build and automatically scales them up or down as
necessary

a) Uses CNCF Kubernetes as the underlying container orchestration layer

b) Auto-scale up (given that the code is written to allow this)

c) Auto-scale down all the way to zero

d) Gradual rollouts of new versions

e) Network routing within the cluster, and ingress connections into the cluster

3) Eventing – allows functions/applications to publish and subscribe to event streams, to enable
loosely-coupled, event-driven systems

a) Universal subscription, delivery, and management of events

b) Bind events to functions or containers

c) Trigger functions when called via and Hypertext Transfer Protocol (HTTP) requests

d) Automatically scale from a few events per day to live streams

UNCLASSIFIED

68

UNCLASSIFIED

One popular open source product that implements FaaS for Kubernetes is Knative. Another open
source product is Kubeless. The DevSecOps Software Factories must offer Knative support.
They may also support Kubeless or another FaaS for Kubernetes.

6.4 Application Security Operations
This section focuses on the software application lifecycle in the production environment.
Continuous Deployment, Continuous Operation, and Continuous Monitoring are keys to
streamlined and secure operations.

6.4.1 Continuous Deployment
Continuous deployment is triggered by the successful delivery of released artifacts to the artifact
repository and may be subject to control with human intervention according to the nature of the
program application. The typical activities for continuous deployment include, but are not
limited to, deploying a new software release to the production environment, applying necessary
infrastructure and security configuration changes, running a smoke test to make sure essential
functionality is working, and performing security scans. Each activity is completed by specific
tools or configuration/orchestration scripts. The selection of tools and the
configuration/orchestration system depends on the application and the production platform. For
example, if the application is containerized and the production platform uses Kubernetes, the
orchestration is done by Kubernetes. In this case, the configuration scripts would be Kubernetes
Operators or Helm charts. On the other hand, if the application is VM based, the
configuration/orchestration tool could be Chef, Puppet or Ansible.

Continuous deployment interacts with other DevSecOps components, such as the artifact
repository for retrieving new releases, the log storage and retrieval service for logging
deployment events, and the issue tracking system for recording any deployment issues. The first-
time deployment may involve heavy infrastructure provisioning, dependency system
configuration (such as monitoring tools, logging tools, scanning tools, backup tools, etc.), and
external system connectivity (such as DoD common security services, etc.).

6.4.2 Continuous Operation
Continuous operation is an extension of continuous deployment. It is triggered by a successful
deployment to the production environment, so that it operates the latest stable software release.
The activities of continuous operation include, but are not limited to, system patching,
compliance scanning, data backup, system recovery if failure happens, and resource optimization
with load balancing and scaling. The selection of the tools that facilitate the activities are
application and environment dependent. The resource optimization heavily depends on the
underlying platform. A containerized application can rely on Kubernetes to automatically scale
containers across cluster nodes. On the other hand, a VM-based application with no containers
can rely on the underlying CSP’s scaling service.

UNCLASSIFIED

69

UNCLASSIFIED

Continuous operation interacts with the logging system, issue tracking system, and the
underlying infrastructure platform.

6.4.3 Continuous Monitoring
Continuous monitoring is an extension to continuous operation. It continuously inventories all
system components, monitors the performance and security of all components, and logs
application and system events. Figure 20 in Section 6.4.4 illustrates the components for
monitoring a containerized application deployed on Kubernetes. Figure 17 illustrates a simplified
sample process of monitoring, logging, and log analysis and alerting, which also applies to
deployments to non-containerized environments.

The process starts with application logging, compute resource monitoring, storage monitoring,
network monitoring, security monitoring, and data monitoring at the Kubernetes pod level in the
case of containerized deployment or individual subsystem level in the case of VM deployment.
Each application will need to determine how it is divided into subsystems, the number of
subsystems, and the specific monitoring mechanisms within the subsystems. The security tools
within each subsystem (e.g., the Sidecar Container Security Stack) will aggregate and forward
the event logs gathered from monitoring to a locally centralized aggregated logs database on the
mission program platform. This should be automated within the Kubernetes cluster. The
aggregated logs will be further forwarded to the Logs/Telemetry Analysis in the DoD Common
Security Services after passing the program application configured log filter. The program’s
local log analysis capability will analyze the aggregated logs and generate incident alerts and
reports. Incidents will be forwarded to the mission program incident management system to
facilitate change request generation for incident resolution. The mission program incident
management should alert or notify the responsible personnel about the incidents. The change
request may be created to address the incident. These actions make the DevSecOps pipeline a
full closed loop from secure operations back to planning.

UNCLASSIFIED

70

UNCLASSIFIED

Figure 17: Logging and Log Analysis Process

6.4.4 Sidecar Container Security Stack
A new service that is enabled by DevSecOps and the container-based Kubernetes runtime
environment is the Sidecar Container Security Stack (SCSS). This security stack enables:
correlated and centralized logs, container security, east/west traffic management, a zero-trust
model, a whitelist, Role-Based Access Control (RBAC), continuous monitoring, signature-based
continuous scanning using Common Vulnerabilities and Exposures (CVEs), runtime behavior
analysis, and container policy enforcement.

One advantage of using the SCSS is that Kubernetes can inject the sidecar automatically, without
the team having to do anything, once it’s configured.

The sidecar pattern is depicted in Figure 18. A container group or pod is a set of containers that
are deployed together. A sidecar is a container running inside a pod alongside an application
container. If there is one application container and one sidecar container in the container group,
then we have the sidecar pattern as depicted in Figure 18.

UNCLASSIFIED

71

UNCLASSIFIED

Figure 18: Sidecar Pattern

The sidecar can share state with the application container. In particular, the two containers can
share disk and network resources while their running components are isolated from one another.

A sidecar is a general container pattern. The Sidecar Container Security Stack has a sidecar
container that contains a security stack, along with some supporting services that run in the
hosting environment, such as a logging service. The security stack in the security sidecar
container will include:

1. A logging agent to push logs to a platform centralized logging service.

2. Container policy enforcement. This includes ensuring container hardening from DCAR
containers are preserved and complies with the NIST 800-190 requirements [12].

3. Runtime Defense, this can perform both signature-based and behavior-based detection.
This can also be used to send notifications when there is anomalous behavior.

4. Vulnerability Management

5. A service mesh proxy to connect to the service mesh

6. Zero Trust down to the container level. Zero trust requires strict controls, never trust
anything by default and always verify. Key aspects of zero trust at the container level
include mutual Transport Layer Security authentication (mTLS), an encrypted
communication tunnel between containers, strong identities per Pod using certificates,
and whitelisting rather than blacklisting.

In addition to the components in the sidecar, there are a few services that support the security
sidecar. These include:

UNCLASSIFIED

72

UNCLASSIFIED

1. Program-specific Log Storage and Retrieval Service

2. Service Mesh

3. Program-specific artifact repository

4. Runtime Behavior Analysis Artificial Intelligence (AI) service

5. DCAR for the hardened containers

6. Common Vulnerabilities and Exposures (CVE)Service / host-based security to provide
CVEs for the security sidecar container

The interaction of these services with the sidecar components is depicted in Figure 19. The
arrows show the direction of the data flow. The items in purple are services provided by the
DoD, while blue indicates components that are provided by the DoD but instantiated and
operated by the program.

Figure 19: Sidecar Components

Table 23: Sidecar Container Security Stack Components

Tool Features Benefits Baseline

Logging agent Send logs to a logging service Standardize log collection to a
central location. This can also be
used to send notifications when
there is anomalous behavior.

MVP

Logging Storage
and Retrieval
Service

Stores logs and allows searching logs Place to store logs MVP

UNCLASSIFIED

73

UNCLASSIFIED

Tool Features Benefits Baseline

Log visualization
and analysis

Ability to visualize log data in various
ways and perform basic log analysis.

Helps to find anomalous patterns Objective

Container policy
enforcement

Support for Security Content
Automation Protocol (SCAP) and
container configuration policies. These
policies can be defined as needed.

Automated policy enforcement MVP

Runtime Defense Creates runtime behavior models,
including whitelist and least privilege

Dynamic, adaptive cybersecurity MVP

Service Mesh
proxy

Ties to the Service Mesh. Used with a
microservices architecture.

Enables use of the service mesh. Objective

Service Mesh Used for a microservices architecture Better microservice management. Objective
Vulnerability
Management

Provides vulnerability management Makes sure everything is properly
patched to avoid known
vulnerabilities

MVP

CVE Service / Host
Based Security

Provides CVEs. Used by the
vulnerability management agent in the
security sidecar container.

Makes sure the system is aware of
known vulnerabilities in
components.

MVP

Artifact Repository Storage and retrieval for artifacts such
as containers.

One location to obtain hardened
artifacts such as containers

MVP

Zero Trust model
down to the
container level

Provides strong identities per Pod with
certificates, mTLS tunneling and
whitelisting of East-West traffic down
to the Pod level.

Reduces attack surface and improves
baked-in security

MVP

Figure 20 depicts another view of the sidecar, along with some of the other DevSecOps
components. Again, the arrows show the direction of the data flow, and not all interactions
between the depicted components are indicated. The program dashboard displays information
about the application. The dashboard is built partly using visualizations from the log
visualization service. The items in purple and blue are either services or components that are
provide by the DoD. But those in blue will be stood up by the program. For example, the Service
Mesh is provided as a hardened container. Similarly, the Sidecar Container Security Stack is
provided as a hardened container that the program installs in each pod (container group); this is
injected by Kubernetes automatically without application developer involvement.

UNCLASSIFIED

74

UNCLASSIFIED

 Figure 20: Sidecar Container Security Stack Interactions

UNCLASSIFIED

75

UNCLASSIFIED

7 Conclusion
We have introduced key DevSecOps concepts, described the DevSecOps Ecosystem, including
the Software Factory and the Sidecar Container Security Stack, and indicated how the ecosystem
should be set up and used. More detail on the components described here, such as DCAR, can be
found in other DoD CIO documents.

Moving to DevSecOps improves agility and speeds new capabilities into the field. But it also
requires new policies, processes and culture change. More information on DevSecOps culture,
metrics, and the maturity model can be found in the DoD DevSecOps Playbook [7].

UNCLASSIFIED

76

UNCLASSIFIED

Appendix A Acronym Table
Acronym Definition
A&A Assessment and Authorization

A&S Acquisition and Sustainment

AI Artificial Intelligence

AO Authorizing Official

API Application Programming Interface
AQ Acquisition
ASW Attack Sensing and Warning

ATC Approval to Connect (ATC)

ATO Authority to Operate (ATO)

AVM Assurance Vulnerability Management

BOM Bill of Materials

CaaS Containers as a Service

CCB Change Control Board
CD Continuous Delivery
CI Continuous Integration

CIO Chief Information Officer
CM Configuration Management

CMDB Configuration Management Data Base

CNCF Cloud Native Computing Foundation

CNSS Committee on National Security Systems

CNSSI Committee on National Security Systems Instruction

COTS Commercial Off The Shelf

CPCON Cyber Protection Condition
CPU Central Processing Unit

CSP Cloud Service Provider

CSSP Cybersecurity Service Provider

CVE Common Vulnerabilities and Exposures

DAST Dynamic Application Security Test
DCAR DoD Centralized Artifact Repository
DCCSCR DoD Centralized Container Source Code Repository

DCIO Deputy Chief Information Officer
DBaaS Database as a Service

DDOS Distributed Denial of Service

DevSecOps Development, Security, and Operations

DISA Defense Information Systems Agency

UNCLASSIFIED

77

UNCLASSIFIED

Acronym Definition
DNS Domain Name Service

DoD Department of Defense

DoDI DoD Instruction

DTRA Defense Threat Reduction Agency
EO Executive Order

FaaS Function as a Service
FMA Forensic Media Analysis
GB Gigabyte

GEP Global Enterprise Partners
GOTS Government Off The Shelf

HTTP Hypertext Transfer Protocol

IA Information Assurance

IaaS Infrastructure as a Service

IaC Infrastructure as Code

IAST Interactive Application Security Test

ICAM Identity, Credential, and Access Management
IDE Integrated Development Environment

IDS Intrusion Detection System

IE Information Enterprise

IHR Incident Handling Response
INFOCON Information Operations Condition

IO Input/Output

IPS Intrusion Prevention System

IR Incident Reporting
ISCM Information Security Continuous Monitoring

IT Information Technology
JVM Java Virtual Machine

KPI Key Performance Indicator

MB Megabyte

MilDep Military Department
MNP Malware Notification Protection

mTLS mutual Transport Layer Security authentication
MVP Minimum Viable Product

NGG Next Generation Governance

NIST National Institute of Standards and Technology

NoSQL Non SQL

NSM Network Security Monitoring

UNCLASSIFIED

78

UNCLASSIFIED

Acronym Definition
OCI Open Container Initiative

OS Operating System

PA Provisional Authorization

PaaS Platform as a Service
PEO Program executive Officer

POA&M Plan of Action and Milestones

QA Quality Assurance

RBAC Role-Based Access Control

RMF Risk Management Framework

ROI Return on Investment

SaaS Software as a Service

SaC Security as Code

SAF Secretary of the Air Force

SAST Static Application Security Test

SCAP Security Content Automation Protocol
SCCA Secure Cloud Computing Architecture

SCSS Sidecar Container Security Stack

SLA Service Level Agreement

SRG Security Requirements Guide

SQL Structured Query Language

SSH Secure Shell

STIG Security Technical Implementation Guide

TRB Technical Review Board

VM Virtual Machine

UNCLASSIFIED

79

UNCLASSIFIED

Appendix B Glossary of Key Terms

Following are the key terms used in describing the reference design in this document.

Term Definition

Artifact

Software Artifact

An artifact is a consumable piece of software produced during the
software development process. Except for interpreted languages,
the artifact is or contains compiled software. Important examples
of artifacts include container images, virtual machine images,
binary executables, jar files, test scripts, test results, security scan
results, configuration scripts, Infrastructure as a Code,
documentation, etc. Artifacts are usually accompanied by
metadata, such as an id, version, name, license, dependencies,
build date and time, etc.

Note that items such as source code, test scripts, configuration
scripts, build scripts, and Infrastructure as Code are checked into
the source code repository, not the artifact repository, and are not
considered artifacts.

Artifact Repository An artifact repository is a system for storage, retrieval, and
management of artifacts and their associated metadata.

Note that programs may have separate artifact repositories to store
local artifacts and released artifacts. It is also possible to have a
single artifact repository and use tags to distinguish the content
types.

Bare Metal

Bare Metal Server

A bare metal or bare metal server refers to a traditional physical
computer server that is dedicated to a single tenant and which does
not run a hypervisor. This term is used to distinguish physical
compute resources from modern forms of virtualization and cloud
hosting.

Binary

Binary File

Binary refers to a data file or computer executable file that is
stored in binary format (as opposed to text), which is computer-
readable, but not human-readable. Examples include images,
audio/video files, exe files, and jar/war/ear files.

Build

Software Build

The process of creating a set of executable code that is produced
by compiling source code and linking binary code.

UNCLASSIFIED

80

UNCLASSIFIED

Build tools

Software Build Tools

Used to retrieve software source code, build software, and generate
artifacts.

CI/CD Orchestrator CI/CD orchestrator is a tool that enables fully or semi-automated
short duration software development cycles through integration of
build, test, secure, store artifacts tools.

CI/CD orchestrator is the central automation engine of the CI/CD
pipeline

CI/CD Pipeline CI/CD pipeline is the set of tools and the associated process
workflows to achieve continuous integration and continuous
delivery with build, test, security, and release delivery activities,
which are steered by a CI/CD orchestrator and automated as much
as practice allows.

CI/CD Pipeline
Instance

CI/CD pipeline instance is a single process workflow and the tools
to execute the workflow for a specific software language and
application type for a project. As much of the pipeline process is
automated as is practicable.

Cloud Native
Computing Foundation
(CNCF)

“CNCF is an open source software foundation dedicated to making
cloud native computing universal and sustainable. Cloud native
computing uses an open source software stack to deploy
applications as microservices, packaging each part into its own
container, and dynamically orchestrating those containers to
optimize resource utilization. Cloud native technologies enable
software developers to build great products faster.” -
https://www.cncf.io/

CNCF-certified
Kubernetes

CNCF has created a Certified Kubernetes Conformance Program.
Software conformance ensures that every vendor’s version of
Kubernetes supports the required APIs. Conformance guarantees
interoperability between Kubernetes from different vendors. Most
of the world’s leading vendors and cloud computing providers
have CNCF certified Kubernetes offerings.

Code Software instructions for a computer, written in a programming
language. These instructions may be in the form of either human-
readable source code, or machine code, which is source code that
has been compiled into machine executable instructions.

https://www.cncf.io/certification/software-conformance/#logos

UNCLASSIFIED

81

UNCLASSIFIED

Configuration
Management

Capability to establish and maintain a specific configuration within
operating systems and applications.

Container A standard unit of software that packages up code and all its
dependencies, down to, but not including the OS. It is a
lightweight, standalone, executable package of software that
includes everything needed to run an application except the OS:
code, runtime, system tools, system libraries and settings.

Continuous Build Continuous build is an automated process to compile and build
software source code into artifacts. The common activities in the
continuous build process include compiling code, running static
code analysis such as code style checking, binary linking (in the
case of languages such as C++), and executing unit tests. The
outputs from continuous build process are build results, build
reports (e.g., the unit test report, and a static code analysis report),
and artifacts stored into Artifact Repository. The trigger to this
process could be a developer code commit or a code merge of a
branch into the main trunk.

Continuous Delivery Continuous delivery is an extension of continuous integration to
ensure that a team can release the software changes to production
quickly and in a sustainable way.

The additional activities involved in continuous integration include
release control gate validation and storing the artifacts in the
artifact repository, which may be different than the build artifact
repository.

The trigger to these additional activities is successful integration,
which means all automation tests and security scans have been
passed.

The human input from the manual test and security activities
should be included in the release control gate.

The outputs of continuous delivery are a release go/no-go decision
and released artifacts, if the decision is to release.

Continuous
Deployment

Continuous deployment is an extension of continuous delivery. It
is triggered by a successful delivery of released artifacts to the
artifact repository.

UNCLASSIFIED

82

UNCLASSIFIED

The additional activities for continuous deployment include, but
are not limited to, deploying a new release to the production
environment, running a smoke test to make sure essential
functionality is working, and a security scan.

The output of continuous deployment includes the deployment
status. In the case of a successful deployment, it also provides a
new software release running in production. On the other hand, a
failed deployment causes a rollback to the previous release.

Continuous Integration Continuous integration goes one step further than continuous
build. It extends continuous build with more automated tests and
security scans. Any test or security activities that require human
intervention can be managed by separate process flows.

The automated tests include, but are not limited to, integration
tests, a system test, and regression tests. The security scans
include, but are not limited to, dynamic code analysis, test
coverage, dependency/BOM checking, and compliance checking.

The outputs from continuous integration include the continuous
build outputs, plus automation test results and security scan results.

The trigger to the automated tests and security scan is a successful
build.

Continuous monitoring Continuous monitoring is an extension to continuous operation. It
continuously monitors and inventories all system components,
monitors the performance and security of all the components, and
audits & logs the system events.

Continuous Operation Continuous operation is an extension to continuous deployment. It
is triggered by a successful deployment. The production
environment operates continuously with the latest stable software
release.

The activities of continuous operation include, but are not limited
to: system patching, compliance scanning, data backup, and
resource optimization with load balancing and scaling (both
horizontal and vertical).

Cybersecurity,

Software Cybersecurity

The preventative methods used to protect software from threats,
weaknesses and vulnerabilities.

UNCLASSIFIED

83

UNCLASSIFIED

DoD Centralized
Artifact Repository
(DCAR)

Holds the hardened container images of DevSecOps components
that DoD mission software teams can utilize to instantiate their
own DevSecOps pipeline. It also holds the hardened containers for
base operating systems, web servers, application servers,
databases, API gateways, message busses for use by DoD mission
software teams as a mission system deployment baseline. These
hardened containers, along with security accreditation reciprocity,
greatly simplifies and speeds the process of obtaining an Approval
to Connect (ATC) or Authority to Operate (ATO).

Delivery The process by which a released software is placed into a artifact
repository that operational environment can download.

Deployment The process by which the released software is downloaded and
deployed to the production environment.

DevSecOps DevSecOps is a software engineering culture and practice that
aims at unifying software development (Dev), security (Sec) and
operations (Ops). The main characteristic of DevSecOps is to
automate, monitor, and apply security at all phases of software
development: plan, develop, build, test, release, deliver, deploy,
operate, and monitor.

DevSecOps Ecosystem A collection of tools and process workflows created and executed
on the tools to support all the activities throughout the full
DevSecOps lifecycle.

The process workflows may be fully automated, semi-automated,
or manual.

DevSecOps Pipeline DevSecOps pipeline is a collection of DevSecOps tools, upon
which the DevSecOps process workflows can be created and
executed.

DevSecOps phase

The software development, security, and operation activities in the
software lifecycle are divided into phases. Each phase completes a
part of related activities using tools.

Environment Sets a runtime boundary for the software component to be
deployed and executed. Typical environments include
development, integration, test, pre-production, and production.

UNCLASSIFIED

84

UNCLASSIFIED

Factory,

Software Factory

A software assembly plant that contains multiple pipelines, which
are equipped with a set of tools, process workflows, scripts, and
environments, to produce a set of software deployable artifacts
with minimal human intervention. It automates the activities in the
develop, build, test, release, and deliver phases. The software
factory supports multi-tenancy.

Software Factory
Artifact Repository

Stores artifacts pulled from DCAR as well as locally developed
artifacts to be used in DevSecOps processes. The artifacts include,
but are not limited to, VM images, container images, binary
executables, archives, and documentation. It supports multi-
tenancy.
Note that program could have separate artifact repositories to store
local artifacts and released artifacts. It is also possible to have a
single artifact repository and use tags to distinguish the contents.

Hypervisor A hypervisor is a kind of low-level software that creates and runs
virtual machines (VMs). Each VM has its own Operating System
(OS). Several VMs can run on one physical machine.

Figure 21: Hypervisor with Virtual Machines

Image Management,

Software Image
Management,

Binary Image
Management,

Container Image
Management,

VM Image
Management

The process of centralizing, organizing, distributing, and tracking
of software artifacts.

Immutable
infrastructure

An infrastructure paradigm in which servers are never modified
after they're deployed. If something needs to be updated, fixed, or

UNCLASSIFIED

85

UNCLASSIFIED

modified in any way, new servers built from a common image
with the appropriate changes are provisioned to replace the old
ones. After they're validated, they're put into use and the old ones
are decommissioned.

The benefits of an immutable infrastructure include more
consistency and reliability in your infrastructure and a simpler,
more predictable deployment process. (from:
https://www.digitalocean.com/community/tutorials/what-is-
immutable-infrastructure)

Infrastructure as Code The management of infrastructure (networks, virtual machines,
load balancers, and connection topology) in a descriptive model,
using the same versioning that the DevSecOps team uses for
source code. Infrastructure as Code evolved to solve the problem
of environment drift in the release pipeline.

Kubernetes An open-source system for automating deployment, scaling, and
management of containerized applications. It was originally
designed by Google and is now maintained by the CNCF. Many
vendors also provide their own branded Kubernetes. It works with
a range of container runtimes. Many cloud services offer a
Kubernetes-based platform as a service.

Lockdown The closing or removal of weaknesses and vulnerabilities from
software.

Microservices Microservices are both an architecture and an approach to software
development in which a monolith application is broken down into
a suite of loosely coupled independent services that can be altered,
updated, or taken down without affecting the rest of the
application.

Mission Application
Platform

The mission application platform is the underlying hosting
environment resources and capabilities, plus any mission program
enhanced capabilities that form the base upon which the mission
software application operates.

Monitoring

Security Monitoring

The regular observation, recording, and presentation of activities.

https://www.digitalocean.com/community/tutorials/what-is-immutable-infrastructure
https://www.digitalocean.com/community/tutorials/what-is-immutable-infrastructure

UNCLASSIFIED

86

UNCLASSIFIED

Node

Cluster node

A node is a worker machine in CNCF Kubernetes. A node may be
a VM or physical machine, depending on the cluster. Each node
contains the services necessary to run pods and is managed by the
master components, including the node controller.

OCI “An open governance structure for the express purpose of creating
open industry standards around container formats and runtime” -
https://www.opencontainers.org/

OCI Compliant
Container

The image of the OCI compliant container must conform with the
OCI Image Specification.

OCI Compliant
Container Runtime

A container runtime is software that executes containers and
manages container images on a node. OCI compliant container
runtime must conform with the OCI Runtime Specification.

Orchestration Automated configuration, coordination, and management.

Platform A platform is a group of resources and capabilities that form a base
upon which other capabilities or services are built and operated.

Pod A group of containers that run on the same CNCF Kubernetes
worker node and share libraries and OS resources.

Provisioning Instantiation, configuration, and management of software or the
environments that host or contain software.

Reporting An account or statement describing an event.

Repository A central place in which data is aggregated and maintained in an
organized way.

Resource CPU, Memory, Disk, Networking

Scanning,

Security Scanning

The evaluation of software for cybersecurity weaknesses and
vulnerabilities.

Sidecar Container
Security Stack

A sidecar container security stack is a stack of sidecar containers
aimed to enhance the security capabilities of the main containers in
the same Pod.

UNCLASSIFIED

87

UNCLASSIFIED

Sidecar A sidecar is a container used to extend or enhance the functionality
of an application container without strong coupling between two.
When using CNCF Kubernetes, a pod is composed of one or more
containers. A sidecar is a utility container in the pod and its
purpose is to support the main application container or containers
inside the same pod. For more information, see Section 6.4.4 and
Kubernetes documentation.

Telemetry Capability to take measurements and collect and distribute the
data.

Test Coverage,

Code Coverage

Test coverage is a measure used to describe what percentage of
application code is exercised when a test suite runs. A higher
percentage indicates more source code executed during testing,
which suggests a lower chance of containing undetected bugs.

Virtual Machine (VM) Emulates a physical computer in software. Several VMs can run
on the same physical device.

Virtual Network Networks constructed of software-defined devices.

Virtual Storage Storage constructed of software-defined devices.

UNCLASSIFIED

88

UNCLASSIFIED

Appendix C References

The following references are utilized in the development of the DevSecOps reference design
document:

[1] Department of Defense, "DoD Cloud Computing Strategy," December 2018.

[2] DISA, "Department Of Defense Cloud Computing Security Requirements Guide, V1R2,"
18 March, 2016.

[3] DISA, "DoD Secure Cloud Computing Architecture (SCCA) Functional Requirements,"
January 31, 2017.

[4] White House, "Presidential Executive Order on Strengthening the Cybersecurity of Federal
Networks and Critical Infrastructure (EO 1380)," May 11, 2017.

[5] National Institute of Standards and Technology, Framework for Improving Critical
Infrastructure Cybersecurity, 2018.

[6] DISA, "Department Of Defense Container Hardening Security Requirements Guide
(Draft)," 2019.

[7] Office of the DoD CIO, "DoD DevSecOps Playbook," 2019. [Online]. Available:
https://www.milsuite.mil/book/groups/dod-enterprise-devsecops.

[8] Puppet Labs, "Puppet State of DevOps Report 2018," Puppet Labs, 2018.

[9] Defense Threat Reduction Agency (DTRA), "Next-Generation Technology Governance,"
2018.

[10] DoD, "DoDI 8510.01: Risk Management Framework for DoD Information Technology,"
24 May 2016.

[11] E. Ries, "The Lean Startup," [Online]. Available: http://theleanstartup.com/principles.
[Accessed 15 July 2019].

[12] NIST, "NIST Special Publication 800-190, Application Container Security Guide,"
September 2017.

UNCLASSIFIED

89

UNCLASSIFIED

[13] N. M. Chaillan, "DoD Enterprise DevSecOps Initiative Hardening Containers," DRAFT,
2019.

[14] NIST, "Security and Privacy Controls for Federal Information Systems and Organizations,"
NIST SP 800-53 Revision 4, 2013.

[15] NIST, "Risk Management Framework for Information Systems and Organizations," NIST
SP 800-37 Revision 2, 2018.

[16] Committee on National Security Systems (CNSS) , "Committee on National Security
Systems Instruction (CNSSI) 4009: Committee on National Security Systems (CNSS)
Glossary," 2015.

[17] M. Fowler, "Strangler Fig Application," 29 June 2004. [Online]. Available:
https://martinfowler.com/bliki/StranglerFigApplication.html. [Accessed 12 July 2019].

[18] P. Hammant, "Legacy applicaion Strangulation: Case Studies," 14 July 2013. [Online].
Available: https://paulhammant.com/2013/07/14/legacy-application-strangulation-case-
studies/. [Accessed 12 July 2019].

	1 Introduction
	1.1 Background
	1.2 Purpose
	1.3 Scope
	1.4 Document Overview

	2 Assumptions and Principles
	2.1 Assumptions
	2.2 Principles

	3 DevSecOps Concepts
	3.1 Key Terms
	3.1.1 Conceptual Model

	3.2 DevSecOps Lifecycle
	3.3 DevSecOps Pillars
	3.3.1 Organization
	3.3.2 Process
	3.3.3 Technology
	3.3.4 Governance
	3.3.4.1 Management Structure
	3.3.4.2 Authorizing Official

	3.4 DevSecOps Ecosystem
	3.4.1 Planning
	3.4.2 Software Factory
	3.4.3 Operations
	3.4.4 External Systems

	4 DevSecOps Tools and Activities
	4.1 Planning Tools and Activities
	4.2 Software Factory Tools and Activities
	4.2.1 CI/CD Orchestrator
	4.2.2 Develop
	4.2.3 Build
	4.2.4 Test
	4.2.5 Release and Deliver

	4.3 Production Operation Tools and Activities
	4.3.1 Deploy
	4.3.1.1 Virtual Machine deployment
	4.3.1.2 Container deployment

	4.3.2 Operate
	4.3.3 Monitor

	4.4 Security Tools and Activities Summary
	4.5 Configuration Management Tools and Activities Summary
	4.6 Database Management Tools and Activities Summary

	5 DoD Enterprise DevSecOps Container Service
	5.1 DoD Enterprise DevSecOps Container Factory
	5.1.1 DoD Hardened Containers
	5.1.2 Container Hardening Process
	5.1.2.1 Select the Container Base Image
	5.1.2.2 Harden the Container
	5.1.2.3 Store the Hardened Container
	5.1.2.4 Documentation
	5.1.2.5 Continuous Engineering
	5.1.2.6 Cybersecurity

	5.2 DoD Centralized Artifact Repository

	6 DevSecOps Ecosystem Reference Designs
	6.1 Containerized Software Factory
	6.1.1 Hosting Environment
	6.1.2 Container Orchestration
	6.1.3 Software Factory Using Hardened Containers
	6.1.4 DoD Applications

	6.2 Software Factory using Cloud DevSecOps Services
	6.3 Serverless Support
	6.4 Application Security Operations
	6.4.1 Continuous Deployment
	6.4.2 Continuous Operation
	6.4.3 Continuous Monitoring
	6.4.4 Sidecar Container Security Stack

	7 Conclusion
	Appendix A Acronym Table
	Appendix B Glossary of Key Terms
	Appendix C References

		2019-09-05T11:52:32-0400
	LAM.NGOAN.THOMAS.1229438960

		2019-09-05T12:01:37-0400
	CHAILLAN.NICOLAS.MAXIME.1535056524

		2019-09-05T21:41:37-0400
	RANKS.PETER.THOMAS.1284616665

