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Component Models 

   

Definitions: 

A Component, for this discussion only, is a relatively independent part of an IT System and is 

characterized by its responsibilities, and the interfaces it offers.  

A Component Model describes the hierarchy of functional components, their responsibilities, static 

relationships, and the way components collaborate to deliver required functionality 

Description. A Component Model evolves through several stages, taking into account the successive 

allocation of system functions to actual systems (components) and the relative maturity of the 

architecture description’s Systems Viewpoint (SV) as a whole. As the process of developing the 

architectural description advances,  the use of specific models is decided upon, middleware is chosen, 

variant technologies are tried and approved; all such decisions end up being reflected in the final 

Component Model.   

The first, level of elaboration -- Conceptual -- describes the architecture at a “macro” level and aligns its 

representation in accordance with generally-accepted representational principles recognized by the 

architecture discipline.  Conceptual elaboration emphasizes increasing cohesion within layers of the 

architectural description and reducing coupling that may exist between them, thus enabling the 

component to be re-used by another organization.  This level of elaboration is meant to be technology-

agnostic – that is, it can be implemented using any toolset that supports the discipline principles. 

The second level of elaboration (Specification) helps to further structure and refine the architectural 

representation by adding technology elements – such as ( in the case of a software architecture) 

transport mechanisms, programming models, and protocols. Like the Conceptual level, the Specification 

level is tool-agnostic.  This means that it can be implemented using any technology that allows the 

selected protocols and programming model to be easily included in the architectural representation.  

The third level of elaboration (Physical) realizes the logical components which were identified at the 

Specification level. It selects from among the set of all implementation alternatives (e.g., hardware and 

software packages, technologies) the ones that will be employed in the final system architecture.  The 

Physical model may be closely tied to, and depend upon, the application development tool the builder 

uses to actually implement the system. 

Construction. A Component Model is described using three views: 

1. Component Relationship Diagram 
2. Component Description 
3. Component Interaction Diagram 
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Each of technique provides important information about the Component Model. The Component 

Relationship Diagram and Component Descriptions provide a static view of the model.  The Component 

Interaction Diagram provides a dynamic view – that is, insight into how the model’s various components 

interact when the system responds to an event, request, etc.  

Depict Component Relationships 

Component Relationship Diagrams can be created using a UML Class Diagram.  Figure 1 depicts such a 

Diagram. Note: use of UML notation here does not imply that all components must be coded in an 

object-oriented language.  

An initial high-level component model diagram can be created quickly to show the overall topology of 

major functional aspects of the system.  This view is not yet detailed enough to understand fully what 

each package will contain, but does allow stakeholders to understand the major features and evaluate 

the completeness of the architectural description.  
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Figure 1:  Component Relationship Diagram 

Create Packages 

The next step is to add more detail to the Component Relationship Diagram, to create a second 

iteration called a Package Diagram.  Figure 2 depicts such a Diagram. The Package Diagram is 

used to organize the various components in the Component Model; it does so by grouping them 

together in a name space.  In the Package Diagram shown below, packages from the first 

diagram are shown in more detail in order to clarify the actions each of the original (high-level) 

packages is intended to support. 
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Figure 2:  Package Relationship Diagram 

Depict Component Interactions 

All models should provide both static and dynamic descriptions. A model should not be considered 

complete without both descriptions. The dynamic description of the Component Model can be 

represented in a Component Interaction Diagram (“Activity Diagram”). 

A Component Interaction Diagram describes a particular collaboration between components – i.e., a 

possible runtime execution. Component Interaction Diagrams show how the services requested from a 

component are realized through collaborations among its contained components. Exchanges that occur 

between any two components during collaboration are called “interactions.”  A Component Interaction 

Diagram showing collaborations between the top-level components describe system-wide interactions. 

Tip: Appropriate Levels of Detail. Each component in the Component Model needs to be described to a 

level of detail that is directly related to the level of elaboration of its containing model.  The amount of 

detail needed in a component description is closely related to who will use the model and for what 

purpose(s) they will use it.  The Conceptual and Specification level models are used primarily by the 

architect as steps toward a Physical level model.  The Physical level model is typically used as input to 

fine-grained design activities, at which point there is often a hand-off from architecture to engineering.  

The Physical level of elaboration can be thought of as the “payoff” level for system developers, since 

based on a Physical representation of the architecture an implementation contractor (builder) can 

proceed to produce a detailed system design. This implies that the Physical level model needs to 

describe components to the level of detail needed by a designer. 
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Conceptual-level component descriptions are typically brief and succinct.  At the Specification level, 

decomposition of the model into more fine-grained components means that additional detail is needed 

to clarify the roles of the components.  At the Physical level of elaboration, greater detail should be 

supplied so that there is no chance for miscommunication between architect and engineer.  For projects 

where the sponsoring organization plans to implement the initial capability using off-the-shelf 

applications with minimal customization, the Physical level of elaboration should describe existing 

COTS/GOTS capabilities as well as the estimated amount of integration needed to make them work in 

the existing infrastructure environment. 
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