
1

Component Models

Definitions:

A Component, for this discussion only, is a relatively independent part of an IT System and is

characterized by its responsibilities, and the interfaces it offers.

A Component Model describes the hierarchy of functional components, their responsibilities, static

relationships, and the way components collaborate to deliver required functionality

Description. A Component Model evolves through several stages, taking into account the successive

allocation of system functions to actual systems (components) and the relative maturity of the

architecture description’s Systems Viewpoint (SV) as a whole. As the process of developing the

architectural description advances, the use of specific models is decided upon, middleware is chosen,

variant technologies are tried and approved; all such decisions end up being reflected in the final

Component Model.

The first, level of elaboration -- Conceptual -- describes the architecture at a “macro” level and aligns its

representation in accordance with generally-accepted representational principles recognized by the

architecture discipline. Conceptual elaboration emphasizes increasing cohesion within layers of the

architectural description and reducing coupling that may exist between them, thus enabling the

component to be re-used by another organization. This level of elaboration is meant to be technology-

agnostic – that is, it can be implemented using any toolset that supports the discipline principles.

The second level of elaboration (Specification) helps to further structure and refine the architectural

representation by adding technology elements – such as (in the case of a software architecture)

transport mechanisms, programming models, and protocols. Like the Conceptual level, the Specification

level is tool-agnostic. This means that it can be implemented using any technology that allows the

selected protocols and programming model to be easily included in the architectural representation.

The third level of elaboration (Physical) realizes the logical components which were identified at the

Specification level. It selects from among the set of all implementation alternatives (e.g., hardware and

software packages, technologies) the ones that will be employed in the final system architecture. The

Physical model may be closely tied to, and depend upon, the application development tool the builder

uses to actually implement the system.

Construction. A Component Model is described using three views:

1. Component Relationship Diagram
2. Component Description
3. Component Interaction Diagram

2

Each of technique provides important information about the Component Model. The Component

Relationship Diagram and Component Descriptions provide a static view of the model. The Component

Interaction Diagram provides a dynamic view – that is, insight into how the model’s various components

interact when the system responds to an event, request, etc.

Depict Component Relationships

Component Relationship Diagrams can be created using a UML Class Diagram. Figure 1 depicts such a

Diagram. Note: use of UML notation here does not imply that all components must be coded in an

object-oriented language.

An initial high-level component model diagram can be created quickly to show the overall topology of

major functional aspects of the system. This view is not yet detailed enough to understand fully what

each package will contain, but does allow stakeholders to understand the major features and evaluate

the completeness of the architectural description.

ibd [system] ESS

«logical»
: Entry Sensor

«logical»
: Exit Sensor

«logical»
: Emergency Monitor

«logical»
: Emer Serv I/F

«logical»
: Event Monitor

«store»
: Event Log

«logical»
: Alarm I/F

«logical»
: Alarm Generator

«logical»
: Perimeter Sensor

«logical»
: Environment Sensor

«logical»
: Fault Mgr

«logical»
: Customer Output Mgr

«logical»
: Customer I/F

«logical»
: Entry/Exit Monitor

: Door Input

: Window Input

: Door Input

: Window Input

: EmergencyData

: EmergencyServicesOut

: Alert Status

: AlarmCmd

: AlarmSignal

: Alert Status

: BIT

: FaultReport

: Fault

: BIT

: BIT

: BIT

: Lamp

: Entry/Exit Alert Status

: SensedExit

: SensedEntry

Figure 1: Component Relationship Diagram

Create Packages

The next step is to add more detail to the Component Relationship Diagram, to create a second

iteration called a Package Diagram. Figure 2 depicts such a Diagram. The Package Diagram is

used to organize the various components in the Component Model; it does so by grouping them

together in a name space. In the Package Diagram shown below, packages from the first

diagram are shown in more detail in order to clarify the actions each of the original (high-level)

packages is intended to support.

3

ESS System Models

ESS Enterprise Models

ESS Logical Design Models

ESS Allocated Design
Models

«document»
Market Needs

«requirement»

id# = SS1

ESS System Specification

«requirement»

id# = LR1

ESS Logical Requirements

«requirement»

id# = AR1

ESS Allocated Requirements

«requirement»

id# = SS102
txt = System shall
detect intruder entry
and exit ...

IntruderDetection «requirement»

id# = SS111

R111

«trace»

«deriveReqt»

«deriveReqt»

«refine»

«refine»

«refine»

«trace»

«satisfy»

«satisfy»

«satisfy»

satisfiedBy
Entry/Exit Subsystem

verifiedBy
Entry/Exit Detection Test

req [package] ESS Requirements Flowdown

Figure 2: Package Relationship Diagram

Depict Component Interactions

All models should provide both static and dynamic descriptions. A model should not be considered

complete without both descriptions. The dynamic description of the Component Model can be

represented in a Component Interaction Diagram (“Activity Diagram”).

A Component Interaction Diagram describes a particular collaboration between components – i.e., a

possible runtime execution. Component Interaction Diagrams show how the services requested from a

component are realized through collaborations among its contained components. Exchanges that occur

between any two components during collaboration are called “interactions.” A Component Interaction

Diagram showing collaborations between the top-level components describe system-wide interactions.

Tip: Appropriate Levels of Detail. Each component in the Component Model needs to be described to a

level of detail that is directly related to the level of elaboration of its containing model. The amount of

detail needed in a component description is closely related to who will use the model and for what

purpose(s) they will use it. The Conceptual and Specification level models are used primarily by the

architect as steps toward a Physical level model. The Physical level model is typically used as input to

fine-grained design activities, at which point there is often a hand-off from architecture to engineering.

The Physical level of elaboration can be thought of as the “payoff” level for system developers, since

based on a Physical representation of the architecture an implementation contractor (builder) can

proceed to produce a detailed system design. This implies that the Physical level model needs to

describe components to the level of detail needed by a designer.

4

Conceptual-level component descriptions are typically brief and succinct. At the Specification level,

decomposition of the model into more fine-grained components means that additional detail is needed

to clarify the roles of the components. At the Physical level of elaboration, greater detail should be

supplied so that there is no chance for miscommunication between architect and engineer. For projects

where the sponsoring organization plans to implement the initial capability using off-the-shelf

applications with minimal customization, the Physical level of elaboration should describe existing

COTS/GOTS capabilities as well as the estimated amount of integration needed to make them work in

the existing infrastructure environment.

Accessibility Report

		Filename:

		Vol_1_Sect_7-2-1_Component_Models.pdf

		Report created by:

		Marilyn Anderson, Section 508 Policy Compliance

		Organization:

		DOD CIO

 [Personal and organization information from the Preferences > Identity dialog.]

Summary

The checker found no problems in this document.

		Needs manual check: 0

		Passed manually: 2

		Failed manually: 0

		Skipped: 3

		Passed: 27

		Failed: 0

Detailed Report

		Document

		Rule Name		Status		Description

		Accessibility permission flag		Passed		Accessibility permission flag must be set

		Image-only PDF		Passed		Document is not image-only PDF

		Tagged PDF		Passed		Document is tagged PDF

		Logical Reading Order		Passed manually		Document structure provides a logical reading order

		Primary language		Passed		Text language is specified

		Title		Passed		Document title is showing in title bar

		Bookmarks		Passed		Bookmarks are present in large documents

		Color contrast		Passed manually		Document has appropriate color contrast

		Page Content

		Rule Name		Status		Description

		Tagged content		Passed		All page content is tagged

		Tagged annotations		Skipped		All annotations are tagged

		Tab order		Passed		Tab order is consistent with structure order

		Character encoding		Passed		Reliable character encoding is provided

		Tagged multimedia		Passed		All multimedia objects are tagged

		Screen flicker		Passed		Page will not cause screen flicker

		Scripts		Passed		No inaccessible scripts

		Timed responses		Passed		Page does not require timed responses

		Navigation links		Passed		Navigation links are not repetitive

		Forms

		Rule Name		Status		Description

		Tagged form fields		Passed		All form fields are tagged

		Field descriptions		Passed		All form fields have description

		Alternate Text

		Rule Name		Status		Description

		Figures alternate text		Passed		Figures require alternate text

		Nested alternate text		Passed		Alternate text that will never be read

		Associated with content		Passed		Alternate text must be associated with some content

		Hides annotation		Passed		Alternate text should not hide annotation

		Other elements alternate text		Passed		Other elements that require alternate text

		Tables

		Rule Name		Status		Description

		Rows		Passed		TR must be a child of Table, THead, TBody, or TFoot

		TH and TD		Passed		TH and TD must be children of TR

		Headers		Skipped		Tables should have headers

		Regularity		Passed		Tables must contain the same number of columns in each row and rows in each column

		Summary		Skipped		Tables must have a summary

		Lists

		Rule Name		Status		Description

		List items		Passed		LI must be a child of L

		Lbl and LBody		Passed		Lbl and LBody must be children of LI

		Headings

		Rule Name		Status		Description

		Appropriate nesting		Passed		Appropriate nesting

Back to Top

