
Version –2.13 | September 2024
DoD-CIO-00008 (ZRIN 0790-ZA24)

CMMC Hashing Guide

24-T-2768

CMMC Artifact Hashing Tool User Guide

CMMC Artifact Hashing Tool User Guide | Version 2.13 ii

NOTICES

The contents of this document do not have the force and effect of law and are not meant to
bind the public in any way. This document is intended only to provide clarity to the public
regarding existing requirements under the law or departmental policies.

DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited.

CMMC Artifact Hashing Tool User Guide

CMMC Artifact Hashing Tool User Guide | Version 2.13 1

CMMC Artifact Hashing Tool User Guide

Audience

This guide assumes that the reader has a basic understanding of command-line tools and
scripting. Given the proprietary nature of the artifacts generated during a CMMC assessment,
it also assumes that the Organization Seeking Assessment (OSA) has staff with sufficient
technical background to use the hashing tool independently on an approved organizational
system. If the OSA lacks staff with the requisite background, they may request assistance
from the assessor or another party in order to complete the process of artifact hashing. Step-
by-step instructions are provided below.

Scope and Purpose

When doing self-assessments, OSAs are not required to
generate hashes for artifacts. Hashing is only required for
assessments by C3PAOs and DCMA DIBCAC.

During the performance of a CMMC assessment, the
assessment team will collect objective evidence using a
combination of three assessment methods:

• examination of artifacts,
• affirmations through interviews, and
• observations of actions.
Because these OSA artifacts may be proprietary, the
assessment team will not take or retain OSA artifacts offsite
at the conclusion of the assessment. For the protection of all
stakeholders, the OSA must retain the artifacts. The artifacts
used as evidence for the assessment must be retained by the
OSA for six (6) years from the date of assessment.

Because the artifacts will remain with the OSA, a tool has
been developed to provide a cryptographic reference (or
hash) for each artifact used in the assessment as discussed
in 32 CFR § 170.17 and 32 CFR § 170.18. If needed, the integrity of the assessment artifacts
may be checked by verifying the hash generated during the assessment. If an artifact has not
been modified, the hash will remain the same.

The Artifact Hashing Tool is a Microsoft PowerShell script that uses the SHA-256 algorithm
to generate a hash of each artifact. Next, it generates a list of artifact filenames and associated
hashes, then completes the process by generating a hash of the list. At the conclusion of the
assessment, the OSA and the assessor will each have the list of artifact names, artifact hashes,
and a hash of the list.

Hashing is Different From
Encryption

Do not confuse hashing with
encryption. Both are
cryptographic functions, but
hashing does not provide
confidentiality for the
artifacts. It provides only a
mechanism to track the
integrity of the artifacts.
Confidentiality of the
artifacts needs to be
handled separately by the
OSA, using a different
mechanism, such as
encryption. When choosing
a location to archive the
artifacts, the OSA should
consider data protection
requirements.

CMMC Artifact Hashing Tool User Guide

CMMC Artifact Hashing Tool User Guide | Version 2.13 2

System Requirements

A computer capable of running Microsoft PowerShell is required for this tool. PowerShell is
available for Windows, Linux, and macOS. Please refer to Microsoft PowerShell instructions
for installation, if the software is not already on the system. The execution of PowerShell
scripts may be restricted by the organization. Microsoft’s instructions explain how to
temporarily bypass such restrictions to use the tool. It may be necessary to speak to an
administrator to obtain the necessary permissions to execute PowerShell scripts. Additional
details can be found in the Supplemental Information section.

This tool was tested on Windows 11 (version 23H2), Windows 10 (version 1904), Linux
(Ubuntu 20.04), and macOS (10.15.7).

Process Overview

During the assessment planning and preparation, the OSA and assessment team should
decide jointly how they will store artifact files during the assessment. The agreed-upon
location should be secure and accessible only to those with a need to know because the
artifacts may contain sensitive or proprietary information.

During the course of the assessment, the team collects information through three assessment
methods: interviews, artifact examination, and observation. This collection may include such
activities as interviewing organization staff, examining the documents or the configuration
of a device, and observing organization staff performing actions (Figure 1). It is important to
collect evidence while performing these actions, to substantiate MET or NOT MET decisions
for each CMMC requirement.

Figure 1 - Assessment Execution

https://docs.microsoft.com/en-us/powershell/scripting/install/installing-powershell?view=powershell-7.1

CMMC Artifact Hashing Tool User Guide

CMMC Artifact Hashing Tool User Guide | Version 2.13 3

The central location where collected assessment artifacts are stored may be a single root
directory (Figure 2, Scenario 1) where all documents are stored. Optionally, the root
directory may have subdirectories within it (Figure 2, Scenario 2). The Artifact Hashing Tool
can operate in either scenario.

Figure 2 - Folder Hierarchy Scenarios

Clearly naming artifacts will aid in the event of an audit or retrospective reviews of
assessment data. Artifact filenames should follow a standardized naming pattern or be
grouped by CMMC requirement.

After all artifacts reviewed by the assessment team are consolidated into the central location,
the OSA may run the artifact hashing tool. Both the OSA and assessor should retain a copy of
the file log, file hashes, and the integrity hash. The following section details the process for
generating hashes for all collected assessment artifacts.

CMMC Artifact Hashing Tool User Guide

CMMC Artifact Hashing Tool User Guide | Version 2.13 4

Tool Usage Process

Use the commands listed in the instructions below to execute the Artifact Hashing Tool on a
computer running Microsoft Windows. If the computer running the tool is operating on
Linux or macOS, minor command modifications will need to be made (e.g., in Linux and
macOS, use mv instead of ren, respectively).

Preparation

1. Create the ArtifactHash.txt file from the content located in Appendix A. The
ArtifactHash.txt file location should be the root directory of the collected assessment
artifacts. Ensure you have access to the root directory location.

2. Locate the root directory where collected assessment artifacts
are stored. In this instance, “root directory” refers to the
directory in which all of the assessment artifacts and/or other
folders containing assessment artifacts have been stored.

3. Modify the file extension of the script file created from the
Appendix A content. The script content is located as text within
Appendix A. You should have a copy of the ArtifactHash.txt file
in the root directory of collected assessment artifacts. You can
use another location, but this guide assumes that the script file
has been copied to this directory.

4. Open Windows Command Prompt or a terminal window for macOS/Linux, then
navigate to the location of the script file.

5. Change the file extension of the script file to read as follows:

Execution of Tool

1. After renaming the script, run the tool. The script has three parameters:

• ExecutionPolicy: This parameter allows the script to run unrestricted. It is
recommended that the ByPass value be retained.

• ArtifactRootDirectory: This specifies the root directory path of the CMMC
assessment artifacts. This location can be represented by a traditional Windows
file path, a UNC path, or even .\ to indicate the current directory. The default value

Windows:
ren ArtifactHash.txt ArtifactHash.ps1

Linux/maxOS:
 mv ArtifactHash.txt ArtifactHash.ps1

Note:
The command line
entries in this guide
can be copied and
pasted into the
respective OS
Command Prompt.

CMMC Artifact Hashing Tool User Guide

CMMC Artifact Hashing Tool User Guide | Version 2.13 5

is the current directory. If the script is located in the root of the artifact repository,
this parameter does not need to be specified on the command line.

• ArtifactOutputDirectory: This specifies the directory where the script will
write two log files. The first log is the listing of all files within the
ArtifactRootDirectory as well as the corresponding hash. The second log is a
hashed value of the first log. This is a simple way to help preserve the integrity of
the artifact listing without requiring the maintenance of a public/private key pair
or a password for an HMAC. The default value for this parameter is the current
directory. If the script is located in the desired output location, this parameter
does not need to be specified on the command line.

2. Execute the following command, along with the determined values for the two directory
parameters:

Important
The command above assumes that the script file is located in the
root assessment artifact directory and that the output hash files
typically goes into to the same directory. The “.\” following the
parameters should be modified if the script is located in a
different directory or to output the hash files to a different
directory. In addition, this command assumes usage of the
ExecutionPolicy cmdlet, which may not be necessary. See the
Supplemental Information section for details.

3. If the tool has run successfully, SCRIPT COMPLETE will be
displayed in the command prompt. At this time, verify that the files
(CMMCAssessmentArtifacts.log) and (CMMCAssessmentLogHash.log) have been
generated in the output directory specified by the second script parameter.

Use Example

In this simple example, a C3PAO has used four files provided by an OSC to support an
assessment. The four assessment related files are in a directory along with the PowerShell
script as shown in Figure 3.

Windows:
 powershell -ExecutionPolicy ByPass .\ArtifactHash.ps1 -
ArtifactRootDirectory .\ -ArtifactOutputDirectory .\

Linux / macOS:
 pwsh -ExecutionPolicy ByPass ./ArtifactHash.ps1 -
ArtifactRootDirectory ./ -ArtifactOutputDirectory ./

Note:
Contact the system
administrator to
address permission
errors or other
restrictions when
running this script.

CMMC Artifact Hashing Tool User Guide

CMMC Artifact Hashing Tool User Guide | Version 2.13 6

Figure 3 - Assessment file directory before hash

Figure 4 shows the successful execution of the PowerShell script and Figure 5 shows the
same directory with the addition of the two PowerShell output files.

Figure 4 - Successful execution of ArtifactHash.ps1

CMMC Artifact Hashing Tool User Guide

CMMC Artifact Hashing Tool User Guide | Version 2.13 7

Figure 5 - Assessment file directory after script execution

CMMCAssessmentArtifacts.log, in Figure 6, is a text file that contains the hashing algorithm
used, hash value of each individual file in the directory, and the filename and path. This text
file contains the list of artifacts. The filename is entered into the Hashed Data List data field
in the CMMC instantiation of eMASS.

CMMCAssessmentLogHash.log in Figure 7, is a text file that contains the single return value
generated by creating a hash of CMMCAssessmentArtifacts.log. This hash is the string to
enter in the Hash Value data field in the CMMC instantiation of eMASS.

CMMCAssessmentArtifacts.log

Algorithm Hash Path
--------- ---- ----
SHA256 43DA1D2EFE64C6C6CA20FF9226104BB3AF6737BE5FBF7BA36E7727F7FAC354 C:\HashTest\ArtifactHash.ps1
SHA256 E3B0C44298FC1C149AFBF4C8996FB92427AE41E4649B934CA495991B7852B855 C:\HashTest\Company_Policies.docx
SHA256 E3B0C44298FC1C149AFBF4C8996FB92427AE41E4649B934CA495991B7852B855 C:\HashTest\Network1.vsdx
SHA256 0D68C066F78B237D50D663A335053E337B63AD8D05130C07997E64262DF29D07 C:\HashTest\Network1_Inventory.xlsx
SHA256 E3B0C44298FC1C149AFBF4C8996FB92427AE41E4649B934CA495991B7852B855 C:\HashTest\SSP_Network1.docx

CMMCAssessmentLogHash.log

Algorithm Hash Path
--------- ---- ----
SHA256 58B521F97FFE61659B7300AAA9916142D3BA77CAF1DCE76512DA32198F8D177C C:\HashTest\CMMCAssessmentArtifacts.log

Figure 6 - CMMCAssessmentArtifacts.log

Figure 7 - CMMCAssessmentLogHash.log

Supplemental Information

CMMC Artifact Hashing Tool User Guide | Version 2.13 8

Supplemental Information
• For parameters that include spaces in the paths, surround the entire path name in

single quotes. During testing, double quotes produced an error.

• If the script file is not placed in the root assessment artifact directory, specify the path
of the script, for example, Z:\Files\Tool\ArtifactHash.ps1.

• In certain instances, the organization may restrict the execution of PowerShell scripts.
The ByPass value of the ExecutionPolicy cmdlet within the command should
temporarily bypass these restrictions. In addition, it is possible to manually verify and
modify the PowerShell script execution policy of the current user as follows.

Note: The content following the # (hashtag) symbol represents a comment in the
script.

1. Verify the policy that is set.

2. Set the execution policy for the user to bypass, and verify that “ByPass” is reflected.

3. After completion of the hashing process, change the execution policy back to the default
state.

Windows:
 powershell get-ExecutionPolicy -Scope CurrentUser #make note of the
current setting

Windows:
 set-ExecutionPolicy ByPass -Scope CurrentUser
 get-ExecutionPolicy -Scope CurrentUser #verify the setting was updated

Windows:
 set-ExecutionPolicy Default -Scope CurrentUser

Appendix A: ArtifactHash.txt File Content
The blue Courier text below is the PowerShell script needed for this task. Use cut and paste
to copy all of the blue Courier content into a text editor and store the file with the name:
ArtifactHash.txt.

<#
.SYNOPSIS
 Hash artifacts for a CMMC Assessment to maintain integrity in the event any files are needed
in the future
.DESCRIPTION
 This script will recursively evaluate all files in a local or UNC path. Each file will be
hashed and written to a text file. Additionally, the record is hashed to preserve the integrity
of the output
.PARAMETER ArtifactRootDirectory
 Specifies the root path of the CMMC assessment artifacts. This location can be represented
by a traditional Windows file path, a UNC path, or even .\
.PARAMETER ArtifactOutputDirectory
 Specifies the directory where the script will write two log files. The first log is the
listing of all files within the ArtifactRootDirectory as well as the corresponding hash. The
second log, is a hashed value of the first log. This is a simple way to help preserve the
integrity of the artifact listing without requiring the maintenance of a public/private key pair
or a password for an HMAC
#>
#VERSION 1.11
param
(
 [Parameter(mandatory=$false)][string]$ArtifactRootDirectory = ".\",
 [Parameter(mandatory=$false)][string]$ArtifactOutputDirectory = ".\"
)

function GetFileHashes ([string] $rootLocation, [boolean] $isDirectory)
{
 if ($isDirectory)
 {
 $hashList = Get-ChildItem -path $rootLocation -Recurse -Force -File | Get-FileHash
 }
 else
 {
 $hashList = Get-FileHash $rootLocation
 }
 return $hashList
}

function WriteASCIIFile ([string] $filePath, [object] $fileContent)
{
 Out-File -FilePath $filePath -Force -Encoding ASCII -InputObject $fileContent -Width 1024
}

function VerifyLocationExist ([string] $location)
{
 try
 { $doesExist = Test-Path $location
 if (-Not $doesExist)
 {
 ECHO "Location $location does not exist"
 throw
 }
 }
 catch
 {
 ECHO "The program failed to evaluate the path. Perhaps you specified an incorrectly
formatted command line parameter?"
 EXIT
 }

}

function IsDirectory ([string] $location)
{
 $isDirectory = (get-item $location) -is [System.IO.DirectoryInfo]
 return $isDirectory
}

$version = "1.11"
ECHO "Artifact Hashing Script Version $version"
#Just making sure locations are legit
ECHO "Verifying existence of $ArtifactRootDirectory"
VerifyLocationExist $ArtifactRootDirectory
ECHO "Verifying existence of $ArtifactOutputDirectory"
VerifyLocationExist $ArtifactOutputDirectory

#determine if the input provided is for a single file or for a directory of files
$artifactLocationIsDir = IsDirectory($ArtifactRootDirectory)
$logFileLocationIsDir = IsDirectory($ArtifactOutputDirectory)

if($logFileLocationIsDir)
{
 $logFileLocation = $ArtifactOutputDirectory + "\CMMCAssessmentArtifacts.log"
 $hashedLogFileLocation = $ArtifactOutputDirectory + "\CMMCAssessmentLogHash.log"
}
else
{
 $endOfString = $ArtifactOutputDirectory.LastIndexOf("\")
 $logFileLocation = $ArtifactOutputDirectory.Substring(0,$endOfString) +
"\CMMCAssessmentArtifacts.log"
 $hashedLogFileLocation = $ArtifactOutputDirectory.Substring(0,$endOfString) +
"\CMMCAssessmentLogHash.log"
}

#return the list of artifacts with their hashed values
$hashedFiles = GetFileHashes $ArtifactRootDirectory $artifactLocationIsDir
ECHO "Writing artifact file listing to $logFileLocation"
WriteASCIIFile $logFileLocation $hashedFiles

#Now, I'm going to create a second file hashing the artifacts file
$hashTheHash = GetFileHashes $logFileLocation $false
ECHO "Writing hashed value of artifact file listing to $hashedLogFileLocation"
WriteASCIIFile $hashedLogFileLocation $hashTheHash
ECHO "SCRIPT COMPLETE"

This page intentionally left blank.

	CMMC Artifact Hashing Tool User Guide
	Audience
	Scope and Purpose
	System Requirements
	Process Overview
	Tool Usage Process
	Preparation
	Execution of Tool
	Use Example

	Supplemental Information
	Appendix A: ArtifactHash.txt File Content

Accessibility Report

		Filename:

		Hashing Guide.pdf

		Report created by:

		

		Organization:

		DoD CIO

 [Personal and organization information from the Preferences > Identity dialog.]

Summary

The checker found no problems in this document.

		Needs manual check: 0

		Passed manually: 2

		Failed manually: 0

		Skipped: 1

		Passed: 29

		Failed: 0

Detailed Report

		Document

		Rule Name		Status		Description

		Accessibility permission flag		Passed		Accessibility permission flag must be set

		Image-only PDF		Passed		Document is not image-only PDF

		Tagged PDF		Passed		Document is tagged PDF

		Logical Reading Order		Passed manually		Document structure provides a logical reading order

		Primary language		Passed		Text language is specified

		Title		Passed		Document title is showing in title bar

		Bookmarks		Passed		Bookmarks are present in large documents

		Color contrast		Passed manually		Document has appropriate color contrast

		Page Content

		Rule Name		Status		Description

		Tagged content		Passed		All page content is tagged

		Tagged annotations		Passed		All annotations are tagged

		Tab order		Passed		Tab order is consistent with structure order

		Character encoding		Passed		Reliable character encoding is provided

		Tagged multimedia		Passed		All multimedia objects are tagged

		Screen flicker		Passed		Page will not cause screen flicker

		Scripts		Passed		No inaccessible scripts

		Timed responses		Passed		Page does not require timed responses

		Navigation links		Passed		Navigation links are not repetitive

		Forms

		Rule Name		Status		Description

		Tagged form fields		Passed		All form fields are tagged

		Field descriptions		Passed		All form fields have description

		Alternate Text

		Rule Name		Status		Description

		Figures alternate text		Passed		Figures require alternate text

		Nested alternate text		Passed		Alternate text that will never be read

		Associated with content		Passed		Alternate text must be associated with some content

		Hides annotation		Passed		Alternate text should not hide annotation

		Other elements alternate text		Passed		Other elements that require alternate text

		Tables

		Rule Name		Status		Description

		Rows		Passed		TR must be a child of Table, THead, TBody, or TFoot

		TH and TD		Passed		TH and TD must be children of TR

		Headers		Passed		Tables should have headers

		Regularity		Passed		Tables must contain the same number of columns in each row and rows in each column

		Summary		Skipped		Tables must have a summary

		Lists

		Rule Name		Status		Description

		List items		Passed		LI must be a child of L

		Lbl and LBody		Passed		Lbl and LBody must be children of LI

		Headings

		Rule Name		Status		Description

		Appropriate nesting		Passed		Appropriate nesting

Back to Top

