

Version – 2.14 | September 2025
DoD-CIO-00008 (ZRIN 0790-ZA24)

CMMC Hashing Guide

MorseC
Cleared

MorseC
Typewritten Text
25-P-1200

CMMC Artifact Hashing Tool User Guide

CMMC Artifact Hashing Tool User Guide | Version 2.14 ii

NOTICES

The contents of this document do not have the force and effect of law and are not meant to
bind the public in any way. This document is intended only to provide clarity to the public
regarding existing requirements under the law or departmental policies.

[DISTRIBUTION STATEMENT A] Approved for public release.

CMMC Artifact Hashing Tool User Guide

CMMC Artifact Hashing Tool User Guide | Version 2.14 1

CMMC Artifact Hashing Tool User Guide

Audience

This guide assumes that the reader has a basic understanding of command-line tools and
scripting. Given the proprietary nature of the artifacts generated during a CMMC assessment,
it also assumes that the Organization Seeking Assessment (OSA) has staff with sufficient
technical background to use the hashing tool independently on an approved organizational
system. If the OSA lacks staff with the requisite background, they may request assistance
from the assessor or another party in order to complete the process of artifact hashing. Step-
by-step instructions are provided below.

Scope and Purpose

When doing self-assessments, OSAs are not required to
generate hashes for artifacts. Hashing is only required for
assessments by C3PAOs and DCMA DIBCAC.

During the performance of a CMMC assessment, the
assessment team will collect objective evidence using a
combination of three assessment methods:

• examination of artifacts,
• affirmations through interviews, and
• observations of actions.

Because these OSA artifacts may be proprietary, the
assessment team will not take or retain OSA artifacts offsite
at the conclusion of the assessment. For the protection of all
stakeholders, the OSA must retain the artifacts. The artifacts
used as evidence for the assessment must be retained by the
OSA for six (6) years from the date of assessment.

Because the artifacts will remain with the OSA, a tool has
been developed to provide a cryptographic reference (or
hash) for each artifact used in the assessment as discussed
in 32 CFR 170.17 and 32 CFR 170.18. If needed, the integrity of the assessment artifacts may
be checked by verifying the hash generated during the assessment. If an artifact has not been
modified, the hash will remain the same.

The Artifact Hashing Tool is a Microsoft PowerShell script that uses the SHA-256 algorithm
to generate a hash of each artifact. Next, it generates a list of artifact filenames and associated
hashes, then completes the process by generating a hash of the list. At the conclusion of the
assessment, the OSA and the assessor will each have the list of artifact names, artifact hashes,
a hash of the list, and a zip file containing all these documents.

Hashing is Different From
Encryption

Do not confuse hashing
with encryption. Both are
cryptographic functions,
but hashing does not
provide confidentiality for
the artifacts. It provides
only a mechanism to track
the integrity of the
artifacts. Confidentiality of
the artifacts needs to be
handled separately by the
OSA, using a different
mechanism, such as
encryption. When choosing
a location to archive the
artifacts, the OSA should
consider data protection
requirements.

CMMC Artifact Hashing Tool User Guide

CMMC Artifact Hashing Tool User Guide | Version 2.14 2

System Requirements

A computer capable of running Microsoft PowerShell version 7 or higher is required for this
tool. PowerShell is available for Windows, Linux, and macOS. Please refer to Microsoft
PowerShell instructions for installation, if the software is not already on the system. The
execution of PowerShell scripts may be restricted by the organization. Microsoft’s
instructions explain how to temporarily bypass such restrictions to use the tool. It may be
necessary to speak to an administrator to obtain the necessary permissions to execute
PowerShell scripts. Additional details can be found in the Supplemental Information section.

This tool was tested on Windows 11 (version 23H2), Windows 10 (version 1904), Linux (Kali
2024.2) and macOS (15.5).

Process Overview

During the assessment planning and preparation,
the OSA and assessment team should decide jointly
how they will store artifact files during the
assessment. The agreed-upon location should be
secure and accessible only to those with a need to
know because the artifacts may contain sensitive or
proprietary information.

During the course of the assessment, the team
collects information through three assessment
methods: interviews, artifact examination, and
observation. This collection may include such
activities as interviewing organization staff,
examining the documents or the configuration of a
device, and observing organization staff performing
actions (Figure 1). It is important to collect evidence
while performing these actions, to substantiate MET
or NOT MET decisions for each CMMC requirement.

WARNING!
Certain file management systems,
such as SharePoint, may alter file
metadata when files are uploaded or
moved, which can affect their hash
values and compromise their use for
auditing purposes. Storing the
documents within a zip file is a best
practice because it prevents these
changes and ensures their
authenticity and integrity. The OSA
keeps the zip file for evidence and is
required to retain it for six years. The
only documentation that is passed to
the assessor is the integrity hash. The
C3PAO or DCMA DIBCAC will enter
the integrity hash into eMASS at the
conclusion of the assessment.

https://docs.microsoft.com/en-us/powershell/scripting/install/installing-powershell?view=powershell-7.1
https://docs.microsoft.com/en-us/powershell/scripting/install/installing-powershell?view=powershell-7.1

CMMC Artifact Hashing Tool User Guide

CMMC Artifact Hashing Tool User Guide | Version 2.14 3

Figure 1 - Assessment Execution

The central location where collected assessment artifacts are stored may be a single root
directory (Figure 2, Scenario 1) where all documents are stored. Optionally, the root
directory may have subdirectories within it (Figure 2, Scenario 2). The Artifact Hashing Tool
can operate in either scenario.

Figure 2 - Folder Hierarchy Scenarios

CMMC Artifact Hashing Tool User Guide

CMMC Artifact Hashing Tool User Guide | Version 2.14 4

Clearly naming artifacts will aid in the event of an audit or retrospective reviews of
assessment data. Artifact filenames should follow a standardized naming pattern or be
grouped by CMMC requirement.

After all artifacts reviewed by the assessment team are consolidated into the central location,
the OSA may run the artifact hashing tool. Both the OSA and assessor should retain a copy of
the file log, file hashes, and the integrity hash. The following section details the process for
generating hashes for all collected assessment artifacts.

Tool Usage Process

Use the commands listed in the instructions below to execute the Artifact Hashing Tool on a
computer running Microsoft Windows. If the computer running the tool is operating on
Linux or macOS, minor command modifications will need to be made (e.g., in Linux and
macOS, use mv instead of ren, respectively).

Preparation

1. Create the ArtifactHash.txt file from the content located in Appendix A. The
ArtifactHash.txt file location should be the root directory of the collected assessment
artifacts. Ensure you have access to the root directory location.

2. Locate the root directory where collected assessment artifacts
are stored. In this instance, “root directory” refers to the
directory in which all of the assessment artifacts and/or other
folders containing assessment artifacts have been stored.

3. Modify the file extension of the script file created from the
Appendix A content. The script content is located as text within
Appendix A. You should have a copy of the ArtifactHash.txt file
in the root directory of collected assessment artifacts. You can
use another location, but this guide assumes that the script file
has been copied to this directory.

4. Open Windows Command Prompt or a terminal window for macOS/Linux, then
navigate to the location of the script file.

5. Change the file extension of the script file to read as follows:

Windows:
ren ArtifactHash.txt ArtifactHash.ps1

Linux/maxOS:
 mv ArtifactHash.txt ArtifactHash.ps1

Note
The command line
entries in this guide
can be copied and
pasted into the
respective OS
Command Prompt.

CMMC Artifact Hashing Tool User Guide

CMMC Artifact Hashing Tool User Guide | Version 2.14 5

Execution of Tool

1. After renaming the script, run the tool. The script has three parameters:

• ExecutionPolicy: This parameter allows the script to run unrestricted. It is
recommended that the ByPass value be retained.

• ArtifactRootDirectory: This specifies the root directory path of the CMMC
assessment artifacts. This location can be represented by a traditional Windows
file path, a UNC path, or even .\ to indicate the current directory. The default value
is the current directory. If the script is located in the root of the artifact repository,
this parameter does not need to be specified on the command line.

• ArtifactOutputDirectory: This specifies the directory where the script will
write the two log files and zip file. The first log is the listing of all files within the
ArtifactRootDirectory as well as the corresponding hash. The second log is a
hashed value of the first log. This is a simple way to help preserve the integrity of
the artifact listing without requiring the maintenance of a public/private key pair
or a password for an HMAC. The default value for this parameter is the current
directory. If the script is located in the desired output location, this parameter
does not need to be specified on the command line.

2. Execute the following command, along with the determined values for the two directory
parameters:

Important
The command above assumes that the script file is located in
the root assessment artifact directory and that the output hash
files typically goes into to the same directory. The “.\” following
the parameters should be modified if the script is located in a
different directory or to output the hash files to a different
directory. In addition, this command assumes usage of the
ExecutionPolicy cmdlet, which may not be necessary. See
the Supplemental Information section for details.

3. If the tool has run successfully, SCRIPT COMPLETE will be
displayed in the command prompt. At this time, verify that the
files (CMMCAssessmentArtifacts.log),
,(CMMCAssessmentLogHash.log)and (HashArtifacts.zip) have been generated in the
output directory specified by the second script parameter.

Windows:
 powershell -command -ExecutionPolicy ByPass .\ArtifactHash.ps1 -
ArtifactRootDirectory .\ -ArtifactOutputDirectory .\

Linux / macOS:
 pwsh -command -ExecutionPolicy ByPass ./ArtifactHash.ps1 -
ArtifactRootDirectory ./ -ArtifactOutputDirectory ./

Note
Contact the system
administrator to
address permission
errors or other
restrictions when
running this script.

CMMC Artifact Hashing Tool User Guide

CMMC Artifact Hashing Tool User Guide | Version 2.14 6

Use Example

In this simple example, a C3PAO has used four files provided by an OSC to support an
assessment. The four assessment related files are in a directory along with the PowerShell
script as shown in Figure 3.

Figure 3 - Assessment file directory before hash

Figure 4 shows the successful execution of the PowerShell script and Figure 5 shows the
same directory with the addition of the three PowerShell output files.

Figure 4 - Successful execution of ArtifactHash.ps1

CMMC Artifact Hashing Tool User Guide

CMMC Artifact Hashing Tool User Guide | Version 2.14 7

Figure 5 - Assessment file directory after script execution

CMMCAssessmentArtifacts.log, in Figure 6, is a text file that contains the hashing algorithm
used, hash value of each individual file in the directory, and the filename and path. This text
file contains the list of artifacts. The filename is entered into the Hashed Data List data field
in the CMMC instantiation of eMASS.

CMMCAssessmentLogHash.log in Figure 7, is a text file that contains the single return value
generated by creating a hash of CMMCAssessmentArtifacts.log. This hash is the string to
enter in the Hash Value data field in the CMMC instantiation of eMASS.

CMMCAssessmentArtifacts.log

Algorithm Hash Path
--------- ---- ----
SHA256 43DA1D2EFE64C6C6CA20FF9226104BB3AF6737BE5FBF7BA36E7727F7FAC354 C:\HashTest\ArtifactHash.ps1
SHA256 E3B0C44298FC1C149AFBF4C8996FB92427AE41E4649B934CA495991B7852B855 C:\HashTest\Company_Policies.docx
SHA256 E3B0C44298FC1C149AFBF4C8996FB92427AE41E4649B934CA495991B7852B855 C:\HashTest\Network1.vsdx
SHA256 0D68C066F78B237D50D663A335053E337B63AD8D05130C07997E64262DF29D07 C:\HashTest\Network1_Inventory.xlsx
SHA256 E3B0C44298FC1C149AFBF4C8996FB92427AE41E4649B934CA495991B7852B855 C:\HashTest\SSP_Network1.docx

CMMCAssessmentLogHash.log

Algorithm Hash Path
--------- ---- ----
SHA256 58B521F97FFE61659B7300AAA9916142D3BA77CAF1DCE76512DA32198F8D177C C:\HashTest\CMMCAssessmentArtifacts.log

Figure 6 - CMMCAssessmentArtifacts.log

Figure 7 - CMMCAssessmentLogHash.log

Supplemental Information

CMMC Artifact Hashing Tool User Guide | Version 2.14 8

Supplemental Information
• For parameters that include spaces in the paths, surround the entire path name in

single quotes. During testing, double quotes produced an error.

• If the script file is not placed in the root assessment artifact directory, specify the path
of the script, for example, Z:\Files\Tool\ArtifactHash.ps1.

• In certain instances, the organization may restrict the execution of PowerShell scripts.
The ByPass value of the ExecutionPolicy cmdlet within the command should
temporarily bypass these restrictions. In addition, it is possible to manually verify and
modify the PowerShell script execution policy of the current user as follows.

Note: The content following the # (hashtag) symbol represents a comment in the
script.

1. Verify the policy that is set.

2. Set the execution policy for the user to bypass, and verify that “ByPass” is reflected.

3. After completion of the hashing process, change the execution policy back to the default
state.

Windows:
 powershell -command get-ExecutionPolicy -Scope CurrentUser

#make note of the current setting

Windows:
 powershell -command set-ExecutionPolicy ByPass -Scope CurrentUser
 powershell -command get-ExecutionPolicy -Scope CurrentUser

#verify the setting was updated

Windows:
 Powershell -command set-ExecutionPolicy Default -Scope CurrentUser

Appendix A: ArtifactHash.txt File Content
The blue Courier text below is the PowerShell script needed for this task. Use cut and paste
to copy all of the blue Courier content into a plain text editor and store the file with the
name: ArtifactHash.txt.

<#
.SYNOPSIS
 Hash artifacts for a CMMC Assessment to maintain integrity in the event
 any files are needed in the future
.DESCRIPTION
 This script will recursively evaluate all files in a local or UNC path.
 Each file will be hashed and written to a text file, and all of the files
 will be zipped together to preserve their hashes. Additionally, the
 hash record is hashed to preserve the integrity of the output.
.PARAMETER ArtifactRootDirectory
 Specifies the root path of the CMMC assessment artifacts. This location
 can be represented by a traditional Windows file path, a UNC path, or
 even .\
.PARAMETER ArtifactOutputDirectory
 Specifies the directory where the script will write two log files and the
 zip file. The first log is the listing of all files within the
 ArtifactRootDirectory as well as the corresponding hash. The second log,
 is a hashed value of the first log. The zipped file will contain all the
 files from the first log to preserve the integrity of the files for when
 they are moved or archived. This is a simple way to help preserve the
 integrity of the artifact listing without requiring the maintenance of
 a public/private key pair or a password for an HMAC
#>
param
(
 [Parameter(mandatory=$false)][string]$ArtifactRootDirectory = ".\",
 [Parameter(mandatory=$false)][string]$ArtifactOutputDirectory = ".\"
)
#VERSION 1.12
$version = "1.12"

if ($PSVersionTable.PSVersion.Major -lt 7) {
 Write-Error "This script requires PowerShell 7.0 or higher. Current version:
$($PSVersionTable.PSVersion)"
 exit 1
}

function GetFileHashes ([string] $rootLocation, [boolean] $isDirectory)
{
 if ($isDirectory)
 {
 $hashList = Get-ChildItem -path $rootLocation -Recurse -Force -File | Get-FileHash
 }
 else
 {
 $hashList = Get-FileHash $rootLocation
 }
 return $hashList
}

function WriteASCIIFile ([string] $filePath, [object] $fileContent)
{
 Out-File -FilePath $filePath -Force -Encoding ASCII -InputObject $fileContent -Width 1024
}

function VerifyLocationExist ([string] $location)
{
 try
 { $doesExist = Test-Path $location
 if (-Not $doesExist)

 {
 ECHO "Location $location does not exist"
 throw
 }
 }
 catch
 {
 ECHO "The program failed to evaluate the path. Perhaps you specified an incorrectly
formatted command line parameter?"
 EXIT
 }
}

function IsDirectory ([string] $location)
{
 $isDirectory = (get-item $location) -is [System.IO.DirectoryInfo]
 return $isDirectory
}

function ZipHashedFiles ([array] $fileList, [string] $outputDirectory)
{
 $zipFilePath = Join-Path $outputDirectory "HashedArtifacts.zip"

 Compress-Archive -Path $fileList.Path -DestinationPath $zipFilePath -Force

 ECHO "Created zip archive at $zipFilePath"
}
ECHO "Artifact Hashing Script Version $version"
#Just making sure locations are legit
ECHO "Verifying existence of $ArtifactRootDirectory"
VerifyLocationExist $ArtifactRootDirectory
ECHO "Verifying existence of $ArtifactOutputDirectory"
VerifyLocationExist $ArtifactOutputDirectory

#determine if the input provided is for a single file or for a directory of files
$artifactLocationIsDir = IsDirectory($ArtifactRootDirectory)
$logFileLocationIsDir = IsDirectory($ArtifactOutputDirectory)

if($logFileLocationIsDir)
{
 $logFileLocation = $ArtifactOutputDirectory + "\CMMCAssessmentArtifacts.log"
 $hashedLogFileLocation = $ArtifactOutputDirectory + "\CMMCAssessmentLogHash.log"
}
else
{
 $endOfString = $ArtifactOutputDirectory.LastIndexOf("\")
 $logFileLocation = $ArtifactOutputDirectory.Substring(0,$endOfString) +
"\CMMCAssessmentArtifacts.log"
 $hashedLogFileLocation = $ArtifactOutputDirectory.Substring(0,$endOfString) +
"\CMMCAssessmentLogHash.log"
}

#return the list of artifacts with their hashed values
$hashedFiles = GetFileHashes $ArtifactRootDirectory $artifactLocationIsDir
ECHO "Writing artifact file listing to $logFileLocation"
WriteASCIIFile $logFileLocation $hashedFiles

#Now, I'm going to create a second file hashing the artifacts file
$hashTheHash = GetFileHashes $logFileLocation $false
ECHO "Writing hashed value of artifact file listing to $hashedLogFileLocation"
WriteASCIIFile $hashedLogFileLocation $hashTheHash
ECHO "Creating zip archive of hashed files"
ZipHashedFiles $hashedFiles $ArtifactOutputDirectory
ECHO "SCRIPT COMPLETE"

	CMMC Artifact Hashing Tool User Guide
	Audience
	Scope and Purpose
	System Requirements
	Process Overview
	Tool Usage Process
	Preparation
	Execution of Tool
	Use Example

	Supplemental Information
	Appendix A: ArtifactHash.txt File Content

