

Enterprise Architecture

based on Design Primitives

and Patterns

Guidelines for the Design and

Development of Event-Trace

Descriptions (DoDAF OV-6c)

using BPMN

December 17, 2009

Enterprise Architecture based on Design Primitives Business Transformation Agency 12/17/2009 i

Version History

Version Publication Date Author Description of Change

0.1 2009-01-26 Michael zur Muehlen Initial Draft

0.2 2009-02-02 Michael zur Muehlen Pre-Publication Draft

1.0 2009-02-03 Michael zur Muehlen Initial Version for DoDAF Journal

1.1 2009-03-03 Michael zur Muehlen Editorial Changes based on Review

1.2 2009-04-20 Michael zur Muehlen Editorial Changes based on external
Reader Feedback

1.3 2009-12-15 Michael zur Muehlen Changes based on DoD DCIO Review

1.4 2009-12-17 Michael zur Muehlen Changes Coordinated with DoD DCIO
and DCMO

Enterprise Architecture based on Design Primitives Business Transformation Agency 12/17/2009 ii

Table of Contents

Version History ... i

Table of Contents .. ii

Table of Figures.. iv

Acronym List .. vi

Executive Summary ... vii

1 Introduction ... 8

1.1 Round-Trip Architecture .. 8

1.2 Interoperability Issues ... 8

1.3 Architectural Primitives .. 8

1.4 Desired Impact .. 9

1.5 No New Notation ... 10

2 Quality Criteria for Architecture Models .. 11

2.1 Correctness ... 11

2.2 Relevance .. 11

2.3 Cost-Effectiveness ... 12

2.4 Clarity, Comparability, and Systematic Design ... 12

3 Modeling Primitives .. 13

3.1 What is a Modeling Primitive? ... 13

3.2 Ontology Representation ... 13

4 Using BPMN to Model OV-6C Event-Trace Descriptions ... 14

4.1 BPMN Development Methodology ... 14

4.1.1 Handoff-Level Processes .. 15

4.1.2 Milestone-Level Processes .. 16

4.1.3 Procedure-Level Processes ... 17

4.2 BPMN Symbol Subset for OV-6c Event Trace Descriptions .. 18

4.3 BPMN Design Patterns .. 19

5 Low-Level BPMN Design Patterns ... 21

5.1 Elementary Patterns .. 21

5.1.1 Sequence [WCP-1] .. 21

5.2 Split Patterns .. 22

5.2.1 Parallel Split (AND-Split) [WCP-2] ... 22

5.2.2 Exclusive Choice (XOR-Split) [WCP-4] ... 23

5.2.3 Multiple Choice (OR-Split) [WCP-6] .. 24

5.2.4 Event-based Choice (Event-based XOR-Split) [WCP-16]................................. 25

5.3 Join Patterns ... 26

5.3.1 Synchronized AND Join (AND-Join) [WCP-3] .. 26

Enterprise Architecture based on Design Primitives Business Transformation Agency 12/17/2009 iii

5.3.2 Unsynchronized Join (XOR-Join) [WCP-5, WCP-8] .. 27

5.3.3 Synchronized OR Join (OR-Join) [WCP-7, WCP-9] .. 28

6 High-Level BPMN Design Patterns .. 29

6.1 Collaboration Patterns .. 29

6.1.1 Abstract Collaboration .. 29

6.1.2 Monitoring ... 30

6.1.3 Voting ... 30

6.1.4 Collaborative Editing ... 31

6.2 Messaging Patterns .. 31

6.2.1 Unidirectional Messaging .. 31

6.2.2 Broadcast Messaging .. 32

6.2.3 Synchronous Request/Response ... 32

6.2.4 Milestone Synchronization [WCP-18] ... 32

6.2.5 Multiple Messages from Event ... 33

6.2.6 External Process Trigger ... 33

6.2.7 Explicit Document/Data Flow .. 35

6.2.8 Supplemental Document/Data Flow .. 35

6.3 Mediation Patterns .. 36

6.3.1 Multiplexing ... 37

6.3.2 De-Multiplexing .. 38

6.4 Miscellaneous Patterns .. 39

6.4.1 State-like Activity .. 39

6.4.2 Multiple Start Events ... 39

6.4.3 Multi-Step Decisions .. 40

6.4.4 Multiple End Events .. 40

6.4.5 Negative Process Outcome... 41

7 References ... 42

8 Appendix A: BPMN Primitives ... 43

9 Appendix B: BPMN Low-Level Design Patterns ... 48

Enterprise Architecture based on Design Primitives Business Transformation Agency 12/17/2009 iv

Table of Figures

Figure 1-1: Sample Interoperability Test .. 9

Figure 1-2: Positioning of Primitives .. 10

Figure 3-1: Lexicon/Primitives Ontology .. 13

Figure 4-1: Alternative BPMN Solutions Example.. 14

Figure 4-2: Handoff-Level BPMN Process .. 15

Figure 4-3: Example Top-Level BPMN Process .. 16

Figure 4-4: Milestone-Level BPMN Process .. 16

Figure 4-5: Example Milestone-Level BPMN Process ... 17

Figure 4-6: Example of Procedure-Level BPMN Process ... 17

Figure 4-7: BPMN Symbol Subset (Primitives) .. 19

Figure 4-8: Design Patterns in Context .. 20

Figure 5-1: Sequence Pattern ... 21

Figure 5-2: Parallel Split Pattern .. 22

Figure 5-3: Exclusive Choice Pattern ... 23

Figure 5-4: Inclusive Choice Pattern ... 24

Figure 5-5: Event-based Choice Pattern... 25

Figure 5-6: Synchronized AND Join Pattern .. 26

Figure 5-7: Unsynchronized XOR-Join Pattern... 27

Figure 5-8: Synchronized OR-Join Pattern .. 28

Figure 6-1: Abstract Collaboration Pattern .. 29

Figure 6-2: Monitoring Pattern ... 30

Figure 6-3: Voting Pattern .. 30

Figure 6-4: Collaborative Editing .. 31

Figure 6-5: Unidirectional Messaging ... 31

Figure 6-6: Broadcast Messaging ... 32

Figure 6-7: Synchronous Request Response .. 32

Figure 6-8: Milestone Synchronization .. 33

Figure 6-9: Multiple Messages ... 33

Figure 6-10: External Process Trigger .. 35

Figure 6-11: Explicit Document/Data Flow .. 35

Figure 6-12: Supplemental Document Flow.. 36

Figure 6-13: Mediation Example ... 36

Enterprise Architecture based on Design Primitives Business Transformation Agency 12/17/2009 v

Figure 6-14: Multiplexing Pattern ... 37

Figure 6-15: De-Multiplexing Pattern .. 38

Figure 6-16: State-like Activity Pattern .. 39

Figure 6-17: Multiple Start Events .. 39

Figure 6-18: Multi-Step Decisions .. 40

Figure 6-19: Multiple End Events .. 40

Figure 6-20: Negative Process Outcome .. 41

Enterprise Architecture based on Design Primitives Business Transformation Agency 12/17/2009 vi

Acronym List

Acronym Definition

BPDM Business Process Definition Meta Model

BPM Business Process Management

BPMN Business Process Modeling Notation

BTA Business Transformation Agency

DoD Department of Defense

DoDAF Department of Defense Architecture Framework

DM2 DoDAF Meta Model

PrOnto Primitives Ontology

PriMo Primitives Modeling Guide

OMG Object Management Group

QUT Queensland University of Technology

TU/e Technical University of Eindhoven

UML Unified Modeling Language

WfMC Workflow Management Coalition

XML eXtensible Markup Language

XPDL XML Process Definition Language

Enterprise Architecture based on Design Primitives Business Transformation Agency 12/17/2009 vii

Executive Summary

Enterprise Architecture (EA) is a key enabler of enterprise business process integration. While Architecture
Frameworks such as DoDAF exist to guide the development of consistent architecture artifacts, significant
roadblocks still exist for effective architecture development, adoption, integration, and federation.

Many of these roadblocks result from the lack of uniform representation for the same semantic content. Architects
use different methodologies to develop models; these models are represented using different modeling languages
and created using different modeling tools.

Even within a single methodology there may exist a variety of different modeling styles, techniques, and practices
for similar content. Moreover, enterprise architecture is necessarily created by different organizations and
disciplines. These in turn employ different terminologies that lead to different perceived business processes.

There is a need for standard formats for diagrams, standard data formats for the exchange of these diagrams, and
standard formats for data that moves within and between the architectures that diagrams represent.

Our proposed solution is a set of architectural primitives and corresponding design patterns. These primitives and
patterns provide a core set of „building block‟ modeling elements founded in the well-defined semantics of the
DoDAF Meta Model (DM2). These building blocks are accompanied by a recommended set of modeling
techniques aimed at covering the different views on an Enterprise Architecture.

The Primitives/Lexicon Project has two core deliverables: A Core Ontology of Architectural Primitives (PrOnto)
providing the basic vocabulary / lexicon of model elements and well-documented guidelines for modeling with
Primitives (PriMo) delivering a comprehensive methodology for consistent model development.

This report describes guidelines for the development of Business Process Models using the Business Process
Modeling Notation (BPMN 1.2). While other materials describe the syntax and semantics of the BPMN elements
we focus on the relationship of these elements to the DM2 and their application to design models that are correct,
consistent, and clear.

Enterprise Architecture based on Design Primitives Business Transformation Agency 12/17/2009 8

1 Introduction

1.1 Round-Trip Architecture

Enterprise Architectures are created using models that represent different aspects or views of an enterprise. A large
number of competing techniques for the design of these models are in use at the DoD. As a consequence, there is
currently no uniform representation for the same content in two architectures, unless the architects and modelers
use the same technique, and apply this technique in the same way. The heterogeneity in tools and techniques is a
necessary consequence of the different needs of architects that design organizational and technical systems. Due to
backgrounds ranging from systems engineering to organizational change management, different modelers may
perceive the same real world content differently. The problem does not lie exclusively with the modelers and
architects. Tool vendors support a variety of techniques, and those that share techniques may support them only
partially or with different visual representations.

The problem of inconsistent representation is not confined to the visual representation of architecture content.
Architecture models are designed for human consumption, but ultimately they serve as input for the realization of
the architecture. For this purpose the graphical models are converted into a machine-readable representation (e.g.
an XML document) that can be read and executed by a suitable environment, such as a service orchestration
platform. In order to support round-trip engineering this conversion has to work both ways. To date, round-trip
engineering is mostly limited to vendor-specific solution stacks, using proprietary formats for model exchange.
Standards for model exchange are the solution to overcome this limitation by allowing for interoperability between
design and execution platforms of different vendors. A major issue in this area is the existence of multiple
competing standards that bind the limited vendor resources to support such standards and fragment the market for
interoperable tools.

1.2 Interoperability Issues

Even within a single standard solution problems persist. A major issue facing interoperability standards is the
inconsistent implementation of existing specifications. Even though multiple tools may support the same
diagramming technique, they may each use proprietary extensions. The same is true for the data formats used for
model persistency. Figure 1-1shows an excerpt from an interoperability test scenario where Modeling tools used a
common standard format to export and import process diagrams. Of the 38 feasible combinations only five
worked without problems, while in eight scenarios the standard format was not understood at all by the receiving
tool. In the remaining cases the original diagram was only partially read or significantly altered by the receiving
tool, sometimes with a transformation of process semantics.

The consequence of this situation is the increasing difficulty to design integrated and federated architectures and
ensure their use to build interoperable systems. It leads to communication gaps between model designers and
decision makers, and leads to unclear relationships between the different views that are part of the DoD
Architecture Framework (DoDAF).

1.3 Architectural Primitives

To solve this problem we propose the use of a rigorously defined set of core architectural primitives, rooted in the
DoDAF V2.0 Meta Model (DM2), and the combination of these primitives into modeling building blocks
(patterns) that can be reused across different projects and architectures. The primitives and patterns are
complemented by a set of usage guidelines that help modelers create high-quality models.

The DM2 is a conceptual data model that represents the core data elements that should be described through
architecture models, e.g. Capabilities, Activities, and Resources. Architecture models are created using modeling
techniques that focus on particular aspects of the target system, e.g. UML Class Diagrams or Business Process
Modeling Notation (BPMN) diagrams. These models are created using software tools for enterprise architecture or
systems modeling.

Enterprise Architecture based on Design Primitives Business Transformation Agency 12/17/2009 9

Figure 1-1: Sample Interoperability Test

Compliance

Test Matrix

Vendor BizAgi itPearls Metastorm
Global

360
SunGard Enhydra Fujitsu

Product
Process

Modeler

Process

Modeler for

Visio

ProVision

for Federal

Process

Modeler

Analyst

Edition

Infinity

Process

Platform

JaWe

Interstage

Busines

Process

Manager

Studio

Vendor Product

Prod.

Vers.

Std.

Vers. 0.66.1 5.0 6.1 1.0 4.5 2.4-1 8.1

BizAgi
Process

Modeler
0.66.1 2.0 success

Gateway type
changed to
data-based
from event-
based

import failed

schema
validation
errors, no
connectors

not
supported

Gateways
and interme-
diate events
converted to
activities

read, but no
diagram

itPearls

Process

Modeler

for Visio

5 1.0
import
failed

success

activities
converted to
gateways, no
subprocesses

read, but
no diagram

read, but
no diagram

converted
start/end
event to
activities

position of icons
off, no
subprocesses,
sequence flow
changed to
condit. flow

1.0

Carnot
import
failed

only 2
activities

activities
converted to
gateways, no
subprocesses

read, but
no diagram

success

converted
start/end
event to
activities

position of icons
off, sequence
flow changed to
condit. flow

 2.0

2 activity
symbols
resized,
position of
icons
mangled

success

positioning of
icons
inverted, no
pools/lanes

import
failed

not
supported

converted
start/end
event to
activities, no
pools/lanes

icons inverted,
scaling factor
misaligned,
sequence flow
changed to
condit. flow, no
subprocesses

2.0

Fujitsu
layout
slightly off

success import failed
import
failed

not
supported

Converted
event to
activity,
added non-
existent
lanes, lost
existing lanes

sequence flow
changed to
condit. flow, no
lanes, sub-
processes lost

Metastorm

ProVision

for

Federal

6.1 2.0 import
failed

pool separator
rendered as
pool w/
objects, orig.
pools are lost

Connector to
Activity 3
rerouted

duplicate
objects,
misrouted
connectors,
no labels

not
supported

import failed

scaling factor
misaligned,
sequence flow
changed to
conditional flow

The Primitives/Lexicon project bridges the gap between the content-agnostic modeling techniques and the
requirements of the DM2 by mapping those constructs of the modeling techniques suitable to represent DoDAF
architecture views to the concepts of the DM2.

Figure 1-2 shows the relationship between the tools, techniques, and the DM2.

1.4 Desired Impact

The Primitives/Lexicon project strives to reduce the number of diagram types used in the construction of
DoDAF-conformant architectures. We expect a number of results:

 Modelers have fewer modeling primitives to learn, as there will be a set of approved notations and notational

elements to use.

 The limited number of modeling “dialects” will reduce the cognitive load both for model designers and model

users. In other words, the resulting architecture views will be easier to understand for the trained user.

Enterprise Architecture based on Design Primitives Business Transformation Agency 12/17/2009 10

Figure 1-2: Positioning of Primitives

 A standardized representation of architecture modeling elements will enable the comparison of different

architectures, which in turn enables the re-use of common modeling patterns and elements. This will lower the

construction cost for enterprise architectures.

 A standardized set of modeling methods enables the standardized training of model designers and users which

will make it easier to bring team members into new projects, and will expand the potential qualified labor pool

for DoD projects.

Ultimately, a standard set of architecture views and modeling techniques supported by structured training efforts
will lead to a higher quality of architecture products, which in turn improves the overall quality of the architecture
in general, which ultimately will lead to a higher solution quality.

1.5 No New Notation

It is important to point out that the Primitives/Lexicon project does not develop new modeling methods or
notations. Instead, it matches existing notations to DoDAF views and DM2 data elements, and develops guidelines
for the creation of high-quality models using these notations.

These guidelines will vary based on the maturity of the respective DoDAF view, notation, and established
modeling practices. The OV-6c/BPMN combination is the first area for these guidelines, others will follow.

Enterprise Architecture based on Design Primitives Business Transformation Agency 12/17/2009 11

2 Quality Criteria for Architecture Models

The goal of this modeling guide is to facilitate the design of correct, high-quality architecture models. In order to
achieve this goal we use a model quality framework to illustrate the quality requirements for architecture models.

The quality of architecture models has a direct impact on how architecture can be communicated and
implemented. High-quality models are easier to read, faster to understand, and thus will cause fewer errors at the
implementation level. Lower quality models take more time to comprehend and may contain misleading or
ambiguous elements that may result in implementations that do not meet the functional and non-functional
requirements of the client.

We use a framework that defines the criteria for high-quality models based on the published Guidelines of
Modeling. These criteria are Correctness, Relevance, Cost-Effectiveness, Clarity, Comparability, and Systematic
Design.1

2.1 Correctness

At a minimum, architects must ensure that in the design of their architectures they create correct models. This
correctness is defined by the following properties:

 Syntactical Correctness, i.e. the model satisfies the rules of the modeling language: A model must satisfy the
vocabulary and grammar restrictions of the modeling language chosen. In particular this correctness means
two things:

 The model uses only approved modeling constructs: A model must not contain any constructs that are
not part of the chosen modeling language. Some languages, such as UML, allow for the customization of
model types through stereotyping. In these cases it is important that the customizations used are
documented and agreed upon by the architect community.

 The modeler connects these modeling constructs in permissible ways, i.e. only in those ways that are
permitted by the modeling language. For example, a process modeler using BPMN must not use message
flow arrows to connect activities that reside within the same pool.

 Semantic Correctness: The model satisfies the semantic requirements of the problem domain depicted

 Factual correctness: The model captures the problem domain accurately, i.e. it does not misconstrue
reality.

 Appropriate level of detail: The model captures aspects of the problem domain at a sufficiently detailed
level to be actionable for the model user, and at a sufficiently abstract level to reduce the complexity of
reality to a manageable level for the model user.

However, just satisfying the correctness requirement does not necessarily result in a good model. A good
architecture model satisfies the correctness requirements and the following additional criteria:

2.2 Relevance

 Problem Relevance. An architecture model has to contain content that is relevant to the problem domain
surveyed. Note that problem relevance is a subject-specific, or more precisely, recipient-specific criterion. This
criterion can be described in two dimensions: Coverage and size. While coverage should be maximized, the
size of the model should be minimized.

1 See for example:

Becker, J., Rosemann, M. & von Uthmann, C.: Guidelines of Business Process Modeling. In: Business Process Management.
Models, Techniques, and Empirical Studies, (Eds, van der Aalst, W.M.P., Desel, J. & Oberweis, A.) Springer, Berlin, Germany,
2000, pp. 30-49.
Moody, D.L.; Shanks, S.: What Makes a Good Data Model? Evaluating the Quality of Entity Relationship Models. In:
Loucopoulos, P. (Eds.): Entity-Relationship Approach - ER'94. Business Modelling and Re-Engineering. 13th International
Conference on the Entity-Relationship Approach. Berlin, Heidelberg etc.: Springer 1994, pp. 94-111.

Enterprise Architecture based on Design Primitives Business Transformation Agency 12/17/2009 12

 Maximum coverage means that an architecture model has to capture all relevant aspects of the problem
domain. It should not omit any content that a model user may require to fully understand the problem

 Minimum size means that a model should not contain details that are irrelevant to the model users.

2.3 Cost-Effectiveness

 Cost-effective Design. The creation of architecture models should not incur prohibitive construction cost. The
cost of analyzing the underlying problem space and the creation of the models should not outweigh the
benefits derived from the use of the models. The use of reference models as templates, the assembly of
predesigned modeling patterns or fragments, and the re-use of models or model elements can contribute to a
lowering of construction cost, making the design of complex models economically feasible.

2.4 Clarity, Comparability, and Systematic Design

 Clear, Comparable, Systematic Design. Architecture models that are difficult to understand may not be used – the
cognitive effort required by the reader may outweigh any potential benefits of using the model. The three
criteria of clarity, comparability and systematic design evaluate to what extent an architecture model has been
designed with simplicity and readability in mind. A model that satisfies these criteria will be easier to
understand and to use than a model that violates either one of the three criteria.

 Systematic Design means that the results of the architecture design process should follow a systematic
layout. In the case of process models this means that the flow direction should be uniform across all
models (left-right or top-down).

 Clarity of design means that crossing lines and overlapping symbols should be avoided wherever possible.

 Comparable design means that related content should be arranged in a similar fashion so as to enable a cross-
check to uncover structural analogies. For example, a data model for suppliers (accounts payable) should
be structured in a similar fashion to the data model for customers (accounts receivable).

Enterprise Architecture based on Design Primitives Business Transformation Agency 12/17/2009 13

3 Modeling Primitives

3.1 What is a Modeling Primitive?

Architectural primitives describe elementary language building blocks for architecture products. These primitives
are directly related to core elements of the DoDAF Meta Model. Primitives bridge the gap between the core DM2
architecture concepts and their associated architecture models, between the architectural models and the various
methods/techniques for modeling them, and between the modeling methods/techniques and standard
presentations for the architecture concepts.

Ultimately a primitive identifies a standard presentation for rendering a core DM2 concept within a particular
method/technique within an architecture model. A primitive could be rendered differently in different architectural
methods/techniques, but always refers to the same DM2 concept. For example, in a DM2 performer would be
rendered as a stick figure in a UML use case diagram, and as a swimlane in a BPMN diagram.

Primitives allow for the transformation of models that use different modeling techniques.

3.2 Ontology Representation

An ontology is a formal representation of a set of concepts and the relationships between those concepts within a
domain.2Figure 3-1 illustrates the basic concepts and relationships used to define the Lexicon/Primitives domain.
The central concept in this ontology is the Modeling Element, which represents a basic building block for
developing enterprise architecture. We describe both primitive modeling elements (as described above) with
corresponding atomic representation symbols, as well as and associated derivative modeling elements that
correspond to low-level design patterns built on the basic primitive elements. Modeling Elements are related to
core architecture concepts from the DoDAF V2.0 Meta Model in order to define the semantics of a modeling
element „building block‟.

Figure 3-1: Lexicon/Primitives Ontology

2 See e.g. Guarino, N.; Oberle, D.; Staab, S.: What is an Ontology? In: S. Staab & R. Studer. Handbook on
Ontologies. 2nd revised edition. Springer, 2009.

Enterprise Architecture based on Design Primitives Business Transformation Agency 12/17/2009 14

4 Using BPMN to Model OV-6C Event-Trace Descriptions

Figure 4-1 shows an example of two alternative representations of the same process. Both diagrams express the
same semantics: After a contract review either contract amendments are requested or the contract is approved.

Figure 4-1: Alternative BPMN Solutions Example

Both renditions are valid models in the Business Process Modeling Notation (BPMN) 1.2. But the model on the
left uses a gateway (diamond) symbol that indicates that the following activities are mutually exclusive, whereas the
model on the right uses conditional flow elements to express this semantic. In order to understand the relationship
between the two conditional flow connectors the user has to parse the associated conditions and infer whether
they are mutually exclusive or potentially overlapping. Without any guidance modelers are free to choose either
representation, leading to models that mix both representations. This makes the models harder to understand by
users, which in turn can lead to inconsistent implementations of architecture products due to misinterpretations of
the depicted semantics.

In order to reduce the variability of visual representations of the same content and consequently the ambiguity of
the resulting models two steps are required:

First, a reference set of elementary modeling elements needs to be defined, eliminating some of the duplicate ways
of representing a given scenario. For example, by eliminating the conditional flow element from the list of
allowable modeling elements we can eliminate the representation on the right of figure 4-1. However, the
elimination of modeling constructs must not compromise the expressiveness of the language as it is required for a
particular purpose.

For instance, BPMN contains the notion of a compensation activity that is useful when specifying transactional
behavior at the system level. However, the OV-6c targets the conceptual or requirements specification level, thus
the compensation activity can be eliminated for the OV-6c without negatively affecting the applicability of BPMN.
At the level of the SV-10c (a systems event-trace description) handling compensation behavior may be essential,
thus the BPMN subset for an SV-10c model may contain more symbols than the BPMN subset for an OV-6c
model.

Once a set of reference modeling elements has been determined, the use of these elements needs to be
standardized. We propose the use of modeling patters both at an elementary level (to ensure model correctness),
and at a semantic level (to ensure standard solutions to common problems).

In the following sections we will address both the selection of a BPMN subset for the OV-6c as well as the design
of patterns for use by BPMN modelers.

4.1 BPMN Development Methodology

Federated Architectures rely on the consistent use of Architecture Frameworks and the systematic design of
architecture views. A standardized development process is thus necessary to facilitate the a process for the
development of a core subset of architecture products.

BPMN lends itself to a top-down approach to process analysis. The BPMN standard contains provisions that
allow for the transition of BPMN models into executable environments, but this transition works best if the
models have been designed in a consistent fashion. At the BTA, for example, most BPMN models are designed
for communication purposes. In order to make a model suitable for communication a few guidelines should be
followed:

Enterprise Architecture based on Design Primitives Business Transformation Agency 12/17/2009 15

Model size: The BPMN model should be limited in size, both in terms of physical size and in terms of the number
of elements contained in the model. Wallpaper-size process diagrams are typically an indicator of unclear
horizontal and vertical process separation.

Vertical separation means that a model should fit within one well-defined level of abstraction. This implies that all
activities contained in the model are of similar granularity and abstraction. A useful indicator to establish a
consistent level of abstraction is the use of process objects, i.e. the key data elements, documents, or files that flow
through a process and are manipulated in the individual activities. If one step operates on a set of documents while
the next step operates on an attribute of a data element, these steps are not at the same level of abstraction.

Horizontal separation means that an end-to-end process should be broken into multiple concatenated diagrams,
unless it is described at the highest level of abstraction (typically as a value chain). Again, process objects can be
helpful in determining handoff points between process segments.

We recommend three levels of abstraction for OV-6c models: Handoffs, milestones, and procedures.

4.1.1 Handoff-Level Processes

At the handoff level the process is broken into activities that group all actions by a performer until a handoff to
another performer occurs. The entire process should be contained in a single pool that demarcates the process
scope. The main focus of the handoff level is to establish the process boundaries, the roles involved in the
performance of the process, and the major communication points (i.e., handoffs). The handoff level process
diagram can contain multiple process outcomes (e.g., success, failure).

Figure 4-2: Handoff-Level BPMN Process

In some cases, e.g. in highly collaborative processes, it may not be possible to define clear handoff-points because
of the amount of back-and-forth communication between parties. In this case it is advisable to focus on the major
process milestones and model these within a pool without identifying individual performers. For example, the
process diagram below shows the major milestones of a Joint Close Air Support mission thread, independent of
the performers that carry out these steps.

Enterprise Architecture based on Design Primitives Business Transformation Agency 12/17/2009 16

Figure 4-3: Example Top-Level BPMN Process

4.1.2 Milestone-Level Processes

At the milestone level, each activity of the handoff level is broken into activities and decisions that affect the flow
of the process in a significant way. The milestone level process diagram will typically contain multiple swimlanes
for different performers; however, one of these swimlanes will likely be the dominant performer due to the nature
of the decomposition. If external parties are involved in the process they can be represented using additional pools
with appropriate message-based linkages to the main pool.

Figure 4-4: Milestone-Level BPMN Process

The focus of the milestone-level process is on measurable state changes in the overall process. Typically, the
achievement of a milestone is a measurable event that can be used for reporting purposes. For this reason,
milestone-level processes may focus on the messages that a process participant sends or receives.

For instance, the process diagram below shows the execute phase of a Joint Close Air Support mission thread, with
an emphasis on the messages exchanged by the individual participants.

Enterprise Architecture based on Design Primitives Business Transformation Agency 12/17/2009 17

Figure 4-5: Example Milestone-Level BPMN Process

4.1.3 Procedure-Level Processes

While the handoff level and the milestone level both focus on the process content in terms of what needs to be
accomplished, the procedure level focuses on how individual activities are carried out. It represents the closest
bridge to the SV-10c process diagrams in that it can contain explicit references to messages, data formats, and
technical systems used to carry out individual activities.

Figure 4-6: Example of Procedure-Level BPMN Process

The example below shows a detailed diagram of the JCAS mission thread activity “Conduct Terminal Attack
Control” that was depicted as a single activity in the milestone-level BPMN process. At the procedure level the
diagram outlines the messages that different participants are exchanging, explicitly outlines decision making
activities, and describes operational activities at an actionable level.

Enterprise Architecture based on Design Primitives Business Transformation Agency 12/17/2009 18

4.2 BPMN Symbol Subset for OV-6c Event Trace Descriptions

The atomic primitives and associated low-level design patterns describe a set of normative modeling elements that
restrict the use of BPMN. This means that modelers cannot use alternative representations for the concepts
described in this section.

BPMN 1.2 defines 53 modeling symbols. Not all of these symbols are similarly important. While nearly all BPMN
models contain tasks and sequence flow, very few models use constructs such as compensation, transaction
boundary, and intermediate rule events. For the purposes of the BTA we analyzed the occurrence of symbols in
the Business Enterprise Architecture (BEA) and developed BPMN models of the Joint Close Air Support (JCAS)
use case within the Core Enterprise Services to the Tactical Edge (CES2TE) project, as well as a reference process
for the Global Collaborative Manufacturing Architecture (GCMA) project. Based on our experiences in these three
areas we developed a recommended set of BPMN constructs for use as the OV-6c building blocks.

This core set of BPMN constructs reduces the vocabulary of BPMN 1.2 from 53 to 29 elements. The omitted
symbols fall into three groups:

 Elements that relate to execution-level semantics (e.g. transactions, compensation) were omitted, because
the views created from the OV-6c model should be at an implementation-agnostic level. Execution
semantics play a role at the systems level (e.g. SV-10c) or services level (e.g. SvcV-10c), but should be
avoided at the OV-6c level.

 Diagram embellishments without semantics of their own (e.g. group, annotation) are often abused by
modelers to capture process semantics that are difficult to model using other constructs. Since these
embellishments do not translate into executable models (e.g. when BPMN models are translated to
BPEL), the semantics contained in these annotations will be lost, potentially resulting in faulty models.
Annotations and embellishments can be created through functionality provided by the modeling tools, but
do not constitute core BPMN primitives.

 Elements that can be represented by other constructs without loss of semantics (e.g. complex gateway).
For these elements we chose one standard representation. For instance, the BPMN standard provides
conditional sequence flows as an alternative to the use of gateways. But conditional sequence flow is
fraught with problems at the diagram level: If an activity has several outgoing conditional sequence flows
it is impossible for the reader to determine whether these flows are mutually exclusive or overlapping
(XOR or OR semantics) without looking at the attributes of the conditional sequence flow elements – and
these attributes are not rendered at the graphical level. This can lead to misinterpretations of the model,
and complicates the design of joins (merges) that mirror the semantics of the preceding splits.

A detailed description of these primitives, their semantics, and their linkage to the DM2 is provided in Appendix
A.

The most significant elimination took place in the area of events. For the purposes of the BTA we limit the use of
BPMN to message, timer, conditional, and signal events. Message events are used to represent point-to-point
communication. Signal events represent broadcast communication. Both are essential to depict radio traffic and
other kinds of information exchange. Timer events are essential to represent scheduled activities as well as planned
delays and timeouts. Conditional events are useful to capture rule-based behavior in the process model and provide
a link to the OV-6a Operational Rules Model.

Figure 4-7 shows the BPMN primitives that resulted from our analysis of BPMN usage in theory and practice.

Note that not all process modeling toolsets support these constructs. Those tools that are BPMN 1.0 compliant do
not provide signal events, nor do they distinguish between throwing and catching intermediate messages. Since the
BPMN 1.2 specification was published in January 2009, these missing elements should be available through
software updates in the near future. In the meantime modelers can use intermediate events and message events to
approximate the semantics of the missing elements while preserving an upgrade path, once their tool reaches
BPMN 1.2 compliance. The BPMN 2.0 specification – currently within the Object Management Group
Finalization Task Force – will introduce new symbols for the modeling of choreographies and new event types,
and the primitives specification will be updated once this version of the standard has been officially released by the
Object Management Group.

Enterprise Architecture based on Design Primitives Business Transformation Agency 12/17/2009 19

Figure 4-7: BPMN Symbol Subset (Primitives)

4.3 BPMN Design Patterns

As discussed earlier, limiting the BPMN 1.2 vocabulary provides only a partial solution to the problem of
inconsistent models. In order to facilitate consistent, correct, and clear models, design patterns provide guidance
for modelers that need to capture typical process semantics. Figure 4-8 shows such design patterns in the context
of a larger JCAS mission thread BPMN diagram. Note how the process is composed of recurring patterns, while at
the same time the process is constructed using the BPMN 1.2 subset described in the previous section.

The BPMN design patterns support the construction of high-quality models. For this purpose we have developed
two sets of design patterns. Low-level design patterns provide elementary process flow semantics, such as
sequence, split and join. These low-level patterns represent an exhaustive list of design options based on several
research projects and will remain invariant. Their use is mandatory for architects that want to design primitives-
compliant processes. High-level design patterns provide solutions to recurring design problems that encapsulate
semantics such as multiple start events, state-like activities, process synchronization and so on. By nature, these
design patterns are not exhaustive, and we expect this catalog of patterns to grow over time as process designers
begin to contribute their own solutions based on individual project experience. The primitives design team
welcomes such submissions and we will publish them in subsequent DoDAF Journal entries.

The following two sections describe in detail the BPMN design patterns, both low-level and high-level. In addition,
Appendix B contains a table of the low-level design patterns and their mapping to DM2 elements.

Enterprise Architecture based on Design Primitives Business Transformation Agency 12/17/2009 20

Figure 4-8: Design Patterns in Context

Enterprise Architecture based on Design Primitives Business Transformation Agency 12/17/2009 21

5 Low-Level BPMN Design Patterns

The following low-level control flow patterns are based on the Workflow Control Flow Patterns work by the
Technical University of Eindhoven and Queensland University of Technology.3 They represent elementary process
building blocks and are chosen to provide a unified representation for common process model fragments. For
each pattern we provide the semantics of the pattern, the rationale (i.e. why this pattern is needed) and design
guidelines that cover the use of the pattern.

5.1 Elementary Patterns

Elementary patterns are the foundational building blocks of a BPMN process diagram. In this section we list each
pattern, outline its semantics in plain English, provide a rationale for why the pattern is needed, and specify design
guidelines for the construction of the pattern.

It should be noted that some of the design guidelines are more restrictive than the BPMN specification. These
restrictions are given to facilitate clear and unambiguous representations of processes and process patterns.

5.1.1 Sequence [WCP-1]

Figure 5-1: Sequence Pattern

5.1.1.1 Semantics

Activity A needs to complete before Activity B can start. A sequence flow indicates a dependency between two
activities, in the above case Activity B depends on Activity A in some form – either through a shared performer or
the exchange of data. A sequence flow always implies a data flow; however, the inverse is not necessarily true – an
activity may produce data that may be supplemental for another activity, but not required.

5.1.1.2 Rationale

BPMN diagrams are intended to capture flow dependencies between activities. The sequence pattern represents
the most basic dependency of two activities.

5.1.1.3 Design Guide

 The general modeling direction for BPMN diagrams should be horizontal left to right, thus the sequence

flow should follow this general direction.4 Exceptions are permissible when sequence flow is used to loop
back to a previously executed activity.

3 N. Russell, A.H.M. ter Hofstede, W.M.P. van der Aalst, and N. Mulyar. Workflow Control-Flow Patterns: A
Revised View. BPM Center Report BPM-06-22, BPMcenter.org, 2006. Note that this revised report identifies more
patterns and thus supersedes the original Workflow Patterns work published as W.M.P van der Aalst, A.H.M. ter
Hofstede, B. Kiepuszewski, and A.P. Barros. Workflow Patterns. Distributed and Parallel Databases, 14(3), pages 5-
51, July 2003

4 In cases where a vertical modeling orientation is necessary (e.g. due to space constraints) similar consistency should
be enforced. A mix between horizontal and vertical diagram orientations within the same context should be
avoided.

Enterprise Architecture based on Design Primitives Business Transformation Agency 12/17/2009 22

 The outgoing Sequence Flow connects on the right side of the preceding Activity

 The incoming Sequence Flow connects on the left side of the succeeding Activity.

 Sequence Flow connections from/to the top and bottom of activities should be avoided.

5.2 Split Patterns

Split patterns are used to create multiple branches of control flow in a process. Depending on the semantic of the
split these branches can either represent independent pathways (i.e. concurrent threads) or they represent
alternative processing pathways.

5.2.1 Parallel Split (AND-Split) [WCP-2]

Figure 5-2: Parallel Split Pattern

5.2.1.1 Semantics

After completion of Activity A both Activity B and Activity C can start independent of each other.

Note: The AND split does not imply that B and C have to occur at the same time. If the same performer is
responsible for B and C these activities might be performed sequentially, although the sequence (B before C or C
before B) is not constrained.

5.2.1.2 Rationale

One of the most prominent sources for efficiency improvements is the parallelization of independent tasks. This
pattern represents the beginning of such a parallelization. It is frequently combined with the synchronized AND
join pattern [WCP-3] for the merging of such parallel flows.

5.2.1.3 Design Guide

 The incoming Sequence Flow connects on the left side of the AND Split Gateway.

 All outgoing Sequence Flows from the AND Split Gateway originate right of the middle of the symbol.

 The AND Split Gateway displays the + symbol to distinguish it from other types of gateways.

 The AND Split Gateway can have an arbitrary number of outgoing sequence flows, but must have at least

two outgoing sequence flows.

 The AND Split Gateway can have only one incoming sequence flow.

Enterprise Architecture based on Design Primitives Business Transformation Agency 12/17/2009 23

5.2.2 Exclusive Choice (XOR-Split) [WCP-4]

Figure 5-3: Exclusive Choice Pattern

5.2.2.1 Semantics

After completion of Activity A either Activity B or Activity C can start (but not both), depending on the truth-
values of the Condition.

Only one outgoing sequence flow from the XOR Gateway can evaluate to true.

5.2.2.2 Rationale

BPMN is capable of capturing multiple process execution scenarios in a single diagram (as opposed to UML
Sequence Diagrams which are limited to one scenario per diagram). The exclusive choice pattern is needed in cases
where the execution of process activities varies depending on the run-time scenario. This pattern is often
combined with the unsynchronized XOR join pattern [WCP-5 or 8], which merges the control flow from two or
more alternative threads.

5.2.2.3 Design Guide

 Within readability constraints, label the outgoing sequence flow with condition descriptions

 The XOR Choice Gateway displays the X symbol to distinguish it from other types of gateways.5

 The XOR Choice Gateway can have an arbitrary number of outgoing sequence flows, but must have at

least two outgoing sequence flows.

 The XOR Choice Gateway can have only one incoming sequence flow.

 The XOR Choice Gateway only interprets the results of a previous activity; it does not represent a

decision-making activity. If a manual or automated decision-making step is required to set the value of the
condition, this step must be modeled as a separate activity that precedes the XOR Choice Gateway. In the
example above Activity A is a decision-making activity, whereas the XOR Choice Gateway just evaluates
the outcome of the decision-making activity.

 The default case (i.e. the standard outcome) can be highlighted by using the Default Sequence Flow

symbol.

5 While BPMN permits the use of blank gateway symbols we recommend the use of explicit gateway markers to
improve the readability of BPMN diagrams.

Enterprise Architecture based on Design Primitives Business Transformation Agency 12/17/2009 24

5.2.3 Multiple Choice (OR-Split) [WCP-6]

Figure 5-4: Inclusive Choice Pattern

5.2.3.1 Semantics

After completion of Activity A either Activity B or Activity C or both Activity B and C can start, depending on the
truth values of Conditions 1 and 2.

Multiple outgoing sequence flows from the OR Gateway can evaluate to true, i.e. it is possible to depict n out of m
semantics.

5.2.3.2 Rationale

BPMN is capable of capturing multiple process execution scenarios in a single diagram. The inclusive choice
pattern is needed in cases where the execution of process activities varies depending on the scenario, and where
one or more branches of a process may be executed in a given scenario. This pattern is often combined with the
synchronized OR-join pattern [WCP-7 or 9], which merges the control flow from two or more threads that have
been split with the inclusive choice pattern.

5.2.3.3 Design Guide

 Within readability constraints, label the outgoing sequence flow with condition descriptions

 The Inclusive Choice Gateway displays the O symbol to distinguish it from other types of gateways.

 The Inclusive Choice Gateway can have an arbitrary number of outgoing sequence flows, but must have

at least two outgoing sequence flows.

 The Inclusive Choice Gateway can have only one incoming sequence flow.

 The Inclusive Choice Gateway only interprets the results of a previous activity; it does not represent a

decision-making activity. If a manual or automated decision-making step is required to set the value of the
condition, this step must be modeled as a separate activity that precedes the Inclusive Choice Gateway. In
the example above Activity A is a decision-making activity, whereas the Inclusive Choice Gateway just
evaluates the outcome of the decision-making activity.

Enterprise Architecture based on Design Primitives Business Transformation Agency 12/17/2009 25

5.2.4 Event-based Choice (Event-based XOR-Split) [WCP-16]

Figure 5-5: Event-based Choice Pattern

5.2.4.1 Semantics

After completion of Activity A the Process will halt until one of the subsequent events occurs. In the sample
diagram above, the process will halt until either a message is received or a timer expires. If the message is received
first, Activity B can start and the timer is disabled. If the timer expires first, Activity C can start and the message
receiver is disabled.

Only one outgoing sequence flow from the Event-based Gateway can evaluate to true at any given time, thus the
Event-based Gateway behaves like an XOR-Gateway, and the separate process paths can later be merged with an
XOR-Join (unsynchronized join, see below).

5.2.4.2 Rationale

A process may have to react to changes in its environment. Intermediate catching events are listeners that sense
environmental changes (arrival of messages, expiration of timers, presence of signals etc.). If a process will react to
just one out of a set of environmental changes the Event-based Gateway reflects this situation.

5.2.4.3 Design Guide

 The Event-based Gateway reflects a wait state in the process – no processing will occur until the

occurrence of one out of multiple events.

 If a subsequent activity can be triggered by different events, merge the multiple alternative triggers with an

XOR Join Gateway.

 If the event trigger is based on contextual information that is not easily captured by timer, message, or

signal event types, a conditional intermediate event symbols should be used. The underlying contextual
conditions can then be represented by a rule written outside of the BPMN diagram.

Enterprise Architecture based on Design Primitives Business Transformation Agency 12/17/2009 26

5.3 Join Patterns

5.3.1 Synchronized AND Join (AND-Join) [WCP-3]

Synchronized AND joins are used to merge multiple concurrent process execution paths into a single path. The
AND gateway will wait until all upstream sequence flow have arrived before initiating the downstream sequence
flow.

Figure 5-6: Synchronized AND Join Pattern

5.3.1.1 Semantics

Example in Figure 5-6: Upon encountering the AND gateway the process will halt until both Activity A and
Activity B are completed. Once activities A and B are completed activity C can start.

All incoming sequence flows to an AND gateway have to signal the completion of their preceding activities or
events before the process can continue.

5.3.1.2 Rationale

When an activity in a process requires data elements that are produced by multiple concurrent activities the AND-
Gateway is necessary to ensure all required data elements are present before the process continues. It serves as a
synchronization point in the process that signals that a subsequent activity is dependent on all activities that enter
the merging AND Gateway.

5.3.1.3 Design Guide

 Only use AND Joins to merge parallel paths that have been split with AND Splits.

 The imprudent use of AND Gateways is a common cause of deadlock situations where a process instance

will not progress because the merging threads are alternative rather than concurrent.

Enterprise Architecture based on Design Primitives Business Transformation Agency 12/17/2009 27

5.3.2 Unsynchronized Join (XOR-Join) [WCP-5, WCP-8]

Unsynchronized XOR-Joins are used to merge alternative process execution paths into a single common path. The
XOR gateway will react to each incoming sequence flow and initiate the downstream sequence flow

Figure 5-7: Unsynchronized XOR-Join Pattern

5.3.2.1 Semantics

At the Gateway the process will halt until either Activity A or Activity B is completed. Once either of these
activities is completed Activity C can start.

If both activity A and B are completed the process may create multiple instances of downstream activities (i.e.
Activity C in the figure above). This may create unwanted side-effects, e.g., the results of the first instance of
Activity C might be lost or duplicate records may be created.

5.3.2.2 Rationale

The XOR Join is used to merge alternative control flows into a common thread. It is commonly used to end a
number of alternative execution paths that have been selected through an XOR Split or an Event-based Gateway.

5.3.2.3 Design Guide

 Only use XOR Joins to merge alternative paths that have been split with XOR Splits.

 Never use an XOR Join to merge parallel process paths – this might lead to an unwanted duplication of

downstream activities.

 The number of threads split and merged should match, if at all possible.

Enterprise Architecture based on Design Primitives Business Transformation Agency 12/17/2009 28

5.3.3 Synchronized OR Join (OR-Join) [WCP-7, WCP-9]

The synchronized OR-Join pattern is used to merge multiple process threads into a single common thread. The
incoming process threads may contain parallel and/or alternative threads, and the OR gateway will evaluate merge
conditions to determine whether the process can proceed. Generally, the OR join is a synchronizing merge
operation in that it requires all incoming process threads to have completed before the downstream sequence flow
can be initiated. The precise semantics of the OR join are complex. For instance, an executable implementation of
the OR-join requires visibility into the upstream processing threads to determine whether or not a particular thread
is still “alive”.

Figure 5-8: Synchronized OR-Join Pattern

5.3.3.1 Semantics

Upon reaching the Gateway the process will halt until at least one incoming sequence flow (from Activity A or
Activity B)is completed and it is apparent that no additional sequence flows will complete. At this point the
underlying conditions of the OR Join are evaluated and the gateway determines if the downstream Activity C can
be initiated.

At least one incoming sequence flow has to complete before the process continues.

The OR Join typically mirrors the condition of upstream OR Splits.

5.3.3.2 Rationale

OR Joins are used to synchronize n out of m parallel process threads. While useful at the analysis level, OR Joins
are difficult to implement in process execution platforms because the number of arriving tokens is only known at
runtime (i.e., when a process instance is being executed). An OR Join should always have a corresponding OR
Split. Not all BPMS thus support the OR Gateway.

5.3.3.3 Design Guide

 Only use OR Joins to merge parallel paths that have been split with OR Splits

Enterprise Architecture based on Design Primitives Business Transformation Agency 12/17/2009 29

6 High-Level BPMN Design Patterns

The elementary design patterns discussed in section 5 can be used in a variety of situations. However, in certain
situations it is desirable to have a solution pattern for a common semantic context. The Joint Capability Areas
(JCAs) provide a framework for such patterns. In the following section we focus on patterns that provide solutions
to common modeling issues surrounding JCAs. These patterns cover aspects such as monitoring, mediation, and
collaboration.

While the low-level patterns are a set of normative modeling elements that restrict the use of BPMN for architects,
the high-level patterns are recommended solutions for common modeling problems. By nature, the high level patterns
are not exhaustive, thus we encourage the submission of additional patterns by architects that have developed
them.

Each high-level pattern can be customized to fit the purpose of the modeler, within the constraints of the
primitives and low-level patterns described in the previous section. For example, the collaboration patterns can be
extended to include more than two collaborating parties. The monitoring pattern can be altered to accommodate
continuous monitoring that is bounded by the receipt of a particular message rather than the expiration of a timer,
etc.

6.1 Collaboration Patterns

6.1.1 Abstract Collaboration

The Abstract Collaboration pattern is used when two (or more) parties jointly work toward a specific outcome.
While the outcome is defined, the process to arrive at this outcome is typically unstructured or unregulated.
Abstract Collaboration is indicated by two activities in separate pools that are linked through message flows. If the
collaborators are part of the same sphere of control, collaboration can be modeled by placing the collaborative
activity in a separate lane that represents a group of all involved parties. For example, in the example shown in
Figure 6-1, if Partner 1 and Partner 2 were part of the same organization they would be represented by two
swimlanes within the same pool. To represent collaboration a third swimlane titled “Partners 1 & 2” could be
added to the pool and “Collaboration Activity” would be placed within this swimlane.

Figure 6-1: Abstract Collaboration Pattern

If two separate swimlanes are involved in the collaboration pattern, both activities should be labeled with the same
name prefix (“Collaboration Activity” in the example above)to indicate the collaborative overlap of the activities.

Enterprise Architecture based on Design Primitives Business Transformation Agency 12/17/2009 30

6.1.2 Monitoring

The Monitoring pattern is used when content that arrives on a messaging channel (Wiki/email/blog/radio etc.) is
recorded (and possibly summarized). Monitoring technically is a state rather than an activity in that it is a period of
time during which reactive a system reacts to external events (i.e. the incoming messages) rather than actively
affecting the external system. In BPMN this can be resolved by using an attached timer event as the exit from an
activity. This pattern is based on the state-like activity pattern described in section 6.4.1.

Figure 6-2: Monitoring Pattern

In the above pattern an expanded subprocess is repeated until a time limit is reached. With each iteration the
embedded subprocess will start and immediately wait for the receipt of a message. Once a message is received it
will be recorded and the iteration of the subprocess completes, to be succeeded by a new iteration. Once the time
limit is reached the subprocess will terminate and the embedding process will continue.

6.1.3 Voting

A frequent collaboration pattern is a voting situation where multiple members of a governing body cast votes that
determine the approval or rejection of an issue/document/solution. A vote will be open for a voting period, but
can be closed when all eligible voters have cast their ballot. The following BPMN diagram illustrates the typical
voting process.

Figure 6-3: Voting Pattern

In an initial activity the list of eligible voting members is determined. The following activity is performed multiple
times in parallel, once for every voting member that has been determined in the previous step. It follows the state-
like activity pattern described in section 6.4.1.A ballot is sent to each member. Subsequently, one of two events can
occur: A predefined point in time before the end of the voting period is reached (a timer expires one day before
vote close in the example above), or the voter casts his/her ballot. If the vote is cast it is recorded. If the timer
expires before the vote is cast a reminder is sent to the voting member. The process continues when all votes have
been recorded or at the end of the voting period, regardless of the total number of votes cast. In the next step the
votes are tallied.

Enterprise Architecture based on Design Primitives Business Transformation Agency 12/17/2009 31

6.1.4 Collaborative Editing

The Collaborative Editing pattern is used in situations where multiple members of an editing/authoring committee
contribute content and comments on a document/model/architecture during an editing/collaboration phase. It is
an example of a refined monitoring pattern and thus can provide an illustration how several generic patterns can
be refined to form a more specific pattern.

Figure 6-4: Collaborative Editing

At the heart of this pattern is the monitoring loop described in section 6.1.2, which in turn is is based on the state-
like activity pattern (described in section 6.4.1). This loop is triggered by user activity on a collaborative medium (a
Wiki in the example, but this could also be email, a blog, a whiteboard or another medium). New activity is
summarized in the “Aggregate Activity” step until a timer expires (e.g. a weekly timer). Once the timer expires the
summarized collaboration activity is reviewed. If there is a sufficient level of activity (e.g. if there is a difference of
opinion, or a certain amount of new content that has been contributed) the collaboration cycle begins again. If
there is insufficient activity, or if a predefined timeframe expires (1 week in the example) the collaboration activity
ends and the collaboration cycle is closed.

6.2 Messaging Patterns

6.2.1 Unidirectional Messaging

In a unidirectional messaging pattern the sending partner will send a message to a receiving partner without
preparing for, expecting, or processing a response. A message in BPMN can have only one sender and recipient,
thus it is a point-to-point pattern. If a message is to be sent to multiple recipients a signal event should be used.

Figure 6-5: Unidirectional Messaging

Note: BPMN provides a distinct symbol for sending messages (message throwing event). It is left to the discretion
of the modeler to decide whether the sending activity is complex enough to warrant the use of the activity symbol,
or whether the use of a throwing message event will suffice.

Enterprise Architecture based on Design Primitives Business Transformation Agency 12/17/2009 32

6.2.2 Broadcast Messaging

In some processes multiple messages may result from the occurrence of an event. In BPMN a message throwing
event can have only one recipient (see One-Directional Messaging above). If the same message is to be sent to
multiple recipients, a signal event should be used. This indicates a broadcast of the message and an unlimited
number of subscribers can react to the receipt of the message.

Figure 6-6: Broadcast Messaging

6.2.3 Synchronous Request/Response

The request/response pattern is a common messaging pattern where a requester sends a message to a recipient and
waits for a response from the same recipient. Request/Response patterns are often blocking, in that the requester
will wait for the reply (synchronous messaging).

Figure 6-7: Synchronous Request Response

BPMN 1.2 provides an event type “Message” to reflect point-to-point messages. Filled envelopes indicate
throwing events (i.e. those sending a message); outlined envelopes indicate catching events (i.e. those reacting to
the arrival of a message).

Note that the request/response pattern does not prescribe the medium of communication (radio, email, fax, etc.)
and the security of the communication channel (authentication, encryption etc.). These facets would be described
at a lower level of granularity.

6.2.4 Milestone Synchronization [WCP-18]

In certain situations the continuation of a process will depend on the progress of a different process. In BPMN
this can be resolved through a message or a signal event. A signal event is appropriate if the milestone in the
signaling process may serve as a “go-ahead signal” for multiple other processes. This inter-process synchronization
can be accomplished at multiple levels. If two distinct processes need to be synchronized the signal event will

Enterprise Architecture based on Design Primitives Business Transformation Agency 12/17/2009 33

broadcast across pools. If two activities within the same process need to be synchronized a signal event can be
used within the same process level or embedded subprocesses to send a synchronization signal.

Figure 6-8: Milestone Synchronization

In the example above, activity BB may be expensive or risky to execute. It requires as input data from activity AA,
but it should only be performed after activity A has been successfully completed. The example on the right shows
the solution pattern if multiple distinct processes in different pools are involved, while the example on the left
shows the same semantics using embedded subprocesses within one pool. Process 1 (Embedded Sub Process A)
will broadcast a sync signal once activity A has been completed. Process 2 (Embedded Sub Process B) will halt
after activity AA has been completed until the signal from process 1 (Embedded Sub Process A) has been
received.

6.2.5 Multiple Messages from Event

If different messages are sent to different recipients an activity with multiple outgoing message flows can be used
to represent the concurrent sending of multiple messages. Note that we interpret multiple outgoing message flows
from an activity to be concurrent, i.e. all messages are sent, independent of the processing context.

Figure 6-9: Multiple Messages

If different sets of messages are sent under different conditions these conditions should be made explicit and
differentiated using Exclusive or Inclusive Choice patterns.

6.2.6 External Process Trigger

Only scheduled processes can be represented in a self-contained fashion, they are triggered by the expiration of a
timer. In many situations, however, processing is the result of some external event or trigger. In a BPMN diagram
this can be achieved by using a catching message event as the process trigger. In some situations it may be
desirable to include the external party that triggers the process in the overall diagram.

Enterprise Architecture based on Design Primitives Business Transformation Agency 12/17/2009 34

Enterprise Architecture based on Design Primitives Business Transformation Agency 12/17/2009 35

Figure 6-10: External Process Trigger

In cases where an external process trigger should be included in the diagram the triggering party should be
represented as a separate pool above the core pool (the triggered process).

6.2.7 Explicit Document/Data Flow

A sequence flow between two activities indicates a precedence/successor relationship. This relationship can be
caused by temporal, performer, or resource (i.e. data) dependencies. In the case of data dependencies it may be
desirable to visualize the document or data element that is passed between two activities. This can be accomplished
by linking a BPMN data object via an undirected Association with the sequence flow between two activities.

Figure 6-11: Explicit Document/Data Flow

Note that data objects are embellishments of the process model but do not contain execution semantics, i.e. this
use of the data object is for illustration purposes only. In BPMN data input/output relationships are handled via
input sets and output sets that are associated with each activity object. These input and output sets are multi-valued
attributes that are not graphically represented in the diagram. In addition, the OV-3 Operational Resource Flow
Exchange Matrix is designed to provide detailed information about the input and output data elements of each
activity.

6.2.8 Supplemental Document/Data Flow

In some process activities there may be documents that can be used to complete the activity, but that are not an
essential precondition for the start (or the completion) of the activity. Common examples are manuals, guidelines,
or instructions. The existence of these documents is not the result of the process itself, thus they are not a normal
part of the sequence flow between activities that moves the results of one activity to the next. Document elements
can be used to indicate supplemental documents that are input to an activity.

Enterprise Architecture based on Design Primitives Business Transformation Agency 12/17/2009 36

Figure 6-12: Supplemental Document Flow

Supplemental documents can be the output of an activity if they are used for governance and compliance purposes
(such as a processing log), but are not consumed by any of the subsequent activities in the process. In these cases a
document element can be connected to an activity with an arrow pointing from the activity to the document.

6.3 Mediation Patterns

Mediation is the aggregation/disaggregation of information between a sender and a recipient. In the example
below four pieces of data are sent from the bottom pool to the top pool. Depending on the configuration of the
communication medium the number of sending and receiving events may differ between the two pools. A
consistent representation of mediation thus requires the modeler to explicitly represent the communication
channel in the diagram as a separate pool.

Figure 6-13: Mediation Example

Enterprise Architecture based on Design Primitives Business Transformation Agency 12/17/2009 37

The following aspects of both the multiplexing and de-multiplexing patterns discussed below should be stressed:

 The communication channel can be a technical device, a software, or a human. The use of a separate pool
is necessary to retain the messaging character of these patterns.

 Multiplexing and de-multiplexing can be extended to include an arbitrary number of senders and/or
recipients. For example, it is possible in the above scenario to package the messages A through D in two
separate messages that are sent to two different recipients.

 The communication channel pool can be used to model message transformation and conditional routing
logic (e.g., forwarding of partial messages in the absence of other information).

6.3.1 Multiplexing

The multiplexing pattern takes an arbitrary number of incoming messages and converts them into a single
outgoing message for the recipient. This pattern is useful to represent a bandwidth limited situation where the
management overhead associated with each message may contribute to a bottleneck situation.

Figure 6-14: Multiplexing Pattern

Enterprise Architecture based on Design Primitives Business Transformation Agency 12/17/2009 38

6.3.2 De-Multiplexing

The de-multiplexing pattern represents the inverse of the multiplexing pattern. In this situation a single message is
broken into separate individual messages that are sent to one (or multiple) recipients.

Figure 6-15: De-Multiplexing Pattern

Enterprise Architecture based on Design Primitives Business Transformation Agency 12/17/2009 39

6.4 Miscellaneous Patterns

6.4.1 State-like Activity

Sometimes a modeler may need to represent an activity that will complete upon the expiration of a timer or the
manual completion of the activity. To represent this situation the modeler can attach a timer event to the boundary
of the activity – once the timer expires the execution of the activity will cease and the sequence flow originating
from the timer event will be followed. If the activity completes prior to the expiration of the timer a regular
sequence flow from the activity will be followed. The sequence flows from the timer event and the regular
sequence flow may be merged using an unsynchronized join (XOR Join), but can be kept separately if different
downstream activities result from the different modes of activity completion.

Figure 6-16: State-like Activity Pattern

6.4.2 Multiple Start Events

Some processes may be triggered through multiple channels – for example, a process may be started by fax or by
email. Each trigger may require specific activities before the (common) main process can commence. There are
several solutions to this scenario.

The simplest solution is to split the process in question into two parts: Multiple feeder processes that react to the
various event combinations, and one common main process that is triggered by the completion of any of the
feeder processes.

BPMN provides a gateway type to handle mutually exclusive events, the event-driven gateway.

Figure 6-17: Multiple Start Events

Enterprise Architecture based on Design Primitives Business Transformation Agency 12/17/2009 40

6.4.3 Multi-Step Decisions

Multi-Step Decisions are common in processes that exhibit a decision-tree-like logic. In these cases multiple
criteria of a decision table are evaluated one at a time either by the same or by different roles. The low-level
patterns Exclusive Choice and Inclusive Choice can be used to reflect the decision logic. However, the gateways
themselves do not make decisions; they react to the outcome of a decision by testing the value of a result variable.
A decision-making activity is necessary before an Exclusive or Inclusive Choice pattern.

Figure 6-18: Multi-Step Decisions

In the example on the left, the Decision Task activity is sufficient to decide which of the subsequent four activities
should be performed. In the example on the right the decision logic is broken down into individual criteria (A, AB,
and CD) that are evaluated by three distinct decision-making activities.

Multiple decision-making activities are required if:

 Different decision-makers evaluate the different criteria, and/or

 The results of one decision serve as the input for the next decision, and/or

 The decision logic should be visualized in the process

The modeler has to trade off the explicit rendering of the decision logic with the overall complexity of the process
model. If the decision logic will be externalized, e.g. by using a rules engine it may be sufficient to model just one
complex decision-making activity. If multiple human participants are involved in the decision-making process it is
advisable to explicitly model the decision logic.

6.4.4 Multiple End Events

In some cases a process may have multiple possible outcomes. Multiple BPMN end events can be used to depict
different exit points from a process. Note that once such an exit point has been reached no other processing in the
same pool is permitted, i.e. end events cannot be used to terminate one of multiple parallel process threads.
Instead these threads should be merged to one common exit point.

Figure 6-19: Multiple End Events

Enterprise Architecture based on Design Primitives Business Transformation Agency 12/17/2009 41

The figure above shows a process with two alternative endings (Process End A and Process End B). This is a legal
pattern as long as no other thread of the process is active when either End A or End B is reached.

6.4.5 Negative Process Outcome

In some instances it may be desirable to visualize a negative process outcome. A negative process outcome does
not indicate that the process has failed (i.e. the processing itself did not conclude properly), but that the result of
the process does not meet the expectations of a “best-case scenario”, for example the disapproval of a mission.

Figure 6-20: Negative Process Outcome

The figure above shows an alternative ending pattern where activity A has two possible outcomes: A successful
and an unsuccessful outcome. In both cases activity A is successfully completed, but the following Exclusive
Choice Gateway will evaluate the outcome and choose the required exit point.

Note: Multiple end events must not directly originate from a single activity, as this would indicate that all end points
are simultaneously reached after the completion of the activity. In cases where multiple end events are required
these must always be preceded by the appropriate gateway to indicate their logical relationship (mutually exclusive
vs. concurrent).

Enterprise Architecture based on Design Primitives Business Transformation Agency 12/17/2009 42

7 References

BEA Development Methodology Version 3.0. BEA Development Team. US DoD Business Transformation Agency,
March 14, 2008

Business Process Modeling Notation. V1.2 OMG Available Specification, OMG formal/2009-01-03, 316 pages.
Available at http://www.omg.org/spec/BPMN/1.2

DoD Architecture Framework Version 2.0 Volume I: Introduction, Overview, and Concepts. Manager’s Guide. DoDAF V2.0
Development Team. US OSD-NII, May 28, 2009

DoD Architecture Framework Version 2.0 Volume II: Architecture Data and Models. Architect’s Guide. DoDAF V2.0
Development Team. US OSD-NII, May 28, 2009

Workflow Control-Flow Patterns: A Revised View. N. Russell, A.H.M. ter Hofstede, W.M.P. van der Aalst, and N.
Mulyar. BPM Center Report BPM-06-22, BPMcenter.org, Eindhoven, NL and Brisbane, Australia 2006.

Workflow Patterns. W.M.P van der Aalst, A.H.M. ter Hofstede, B. Kiepuszewski, and A.P. Barros. Distributed and
Parallel Databases, 14(3), pages 5-51, July 2003.

Guidelines of Business Process Modeling. Becker, J., Rosemann, M. & von Uthmann, C.; In: Business Process
Management. Models, Techniques, and Empirical Studies, (Eds, van der Aalst, W.M.P., Desel, J. & Oberweis, A.)
Springer, Berlin, Germany, 2000, pp. 30-49.

What is an Ontology? Guarino, N.; Oberle, D.; Staab, S., In: S. Staab & R. Studer. Handbook on Ontologies. 2nd
revised edition. Springer, 2009.

What Makes a Good Data Model? Evaluating the Quality of Entity Relationship Models. Moody, D.L.; Shanks, S.; In:
Loucopoulos, P. (Eds.): Entity-Relationship Approach - ER'94. Business Modelling and Re-Engineering. 13th
International Conference on the Entity-Relationship Approach. Berlin, Heidelberg etc.: Springer 1994, pp. 94-111.

Enterprise Architecture based on Design Primitives Business Transformation Agency 12/17/2009 43

8 Appendix A: BPMN Primitives

The table below identifies the initial set of BPMN primitive modeling elements relevant in the architectural view
OV-6C, and describes their relationship to core elements of the DoDAF V2.0 Meta Model (DM2).

Table 8-1 Primitive BPMN Modeling Elements for OV-6C

Primitive OV-6C Semantics BPMN Symbol DM2 Element

Task

A Task is an atomic activity
that is included within a
Process. A Task is used
when the work in the
Process is not broken
down to a finer level of
Process Model detail.
Generally, an end-user
and/or an application are
used to perform the Task
when it is executed.

Activity

Sub-Process A Sub-Process is a Process
that is included within
another Process. A Sub-
Process shares the same
shape as the Task, which is
a rectangle that has
rounded corners. A Sub-
Process is marked by a [+]
marker at the bottom of
the symbol.

Activity

Expanded
Sub-Processes

An expanded Sub-Process
is a Sub-Process that shows
its details within the view
of the Process in which it is
contained. An expanded
Sub-Process is not marked
separately, as it can be
identified by the BPMN
symbols contained therein.

Activity

Loop Marker A loop marker indicates
that a task will repeat
depending on some
condition set at the
attribute level of the task. A
loop marker can be used
with a Sub-Process as well.

Activity

Multiple
Instance
Marker

A multiple instance marker
indicates that multiple
concurrent instances of a
task (or sub-process) will
be created at run-time.
How many of these

Activity

Enterprise Architecture based on Design Primitives Business Transformation Agency 12/17/2009 44

Primitive OV-6C Semantics BPMN Symbol DM2 Element

instances need to complete
before the task completes is
defined at the attribute
level of the Task (or Sub-
Process).

Parallel
Gateway

A parallel gateway splits
one process thread into
multiple concurrent threads
or merges multiple
concurrent threads into one
thread via a synchronized
join (i.e. the outgoing
sequence flow will only be
activated one all incoming
sequence flows have been
activated).

Rule; RuleConstrainsActivity (for
activities that flow out of the

gateway);

Data-based
Exclusive
Gateway

A data-based exclusive
gateway when used as a
split routes the sequence
flow from one incoming
flow to exactly one of
multiple outgoing flows.
When used as a merge it
will wait until one of the
incoming sequence flows is
traversed.

Rule; RuleConstrainsActivity (for
activities that flow out of the

gateway);

Inclusive
Gateway

An inclusive gateway when
used as a split activates one
or more branches based on
branching conditions.
When used as a merge, it
awaits all active incoming
branches to complete.

Rule; RuleConstrainsActivity (for
activities that flow out of the

gateway);

Event-based
Exclusive
Gateway

An event-based exclusive
gateway is always followed
by catching events or by
receive tasks. Sequence
flow is routed to the
subsequent event/task that
is activated by the first
event occurrence.

Rule; RuleConstrainsActivity (for
activities that flow out of the

gateway);

Start Event A start event indicates the
first node of a process.

Event

Message Start
Event

A message start event
indicates that the process
will start once a particular
message has been received.

Event

Enterprise Architecture based on Design Primitives Business Transformation Agency 12/17/2009 45

Primitive OV-6C Semantics BPMN Symbol DM2 Element

Signal Start
Event

A signal start event
indicates that the process
will start once a broadcast
message has been
observed.

Event

Timer Start
Event

A timer start event
indicates that the process
will start at a specific time
(or after a specific delay).

Event

Conditional
Start Event

A conditional start event
indicates that the process
will start when a set of rules
(conditions) evaluates to
true.

Event

Intermediate
Message
Catching
Event

An intermediate message
catching event indicates
that the execution of the
process will halt until a
specific message has been
received.

Event

Intermediate
Timer
Catching
Event

An intermediate timer
catching event indicates
that the execution of the
process will halt until a
specific message has been
received.

Event

Intermediate
Signal
Catching
Event

An intermediate signal
catching event indicates
that the execution of the
process will halt until a
broadcast signal has been
observed.

Event

Intermediate
Conditional
Catching
Event

An intermediate
conditional catching event
indicates that the execution
of the process will halt until
a specific set of rules
evaluates to true.

Event

Intermediate
Message
Throwing
Event

An intermediate message
throwing event indicates
that the process will send a
message to a specific
recipient at the point
specified.

Event

Intermediate
Signal
Throwing

An intermediate signal
throwing event indicates
that the process will send a

Event

Enterprise Architecture based on Design Primitives Business Transformation Agency 12/17/2009 46

Primitive OV-6C Semantics BPMN Symbol DM2 Element

Event broadcast signal at the
point specified.

End Event An end event indicates the
last node of a process.

Event

End Message
Event

An end message event
sends (throws) a message at
the end of the process.

Event

End Signal
Event

An end signal event
broadcasts (throws) a signal
at the end of the process.

Event

Data Object A data object represents
data flowing through the
process, indicating how
documents, data, and other
objects are used and
updated during the process.

Data

Lane Represents responsibilities
for activities in a process.

Performer;ActivityPerformerOverlap
(for activities in the lane)

Pool Lanes subdivide pools (or
other lanes) hierarchically.

Performer;ActivityPerformerOverlap
(for activities in the lane)

Sequence
Flow

Defines the execution
order of activities. The
Default Flow symbol
indicates the standard
execution path in the
presence of OR or XOR
splits.

 ActivityBeforeAfter

Message Flow Information flow across
organizational boundaries.

 ActivityResouceOverlap

Association Attaching a data object
with an undirected
association to a sequence
flow illustrates the hand-
over of information
between the activities
involved. A directed
association between a data
object and an activity
illustrates the availability of
this data object for use in
the execution of the
activity.

ActivityResouceOverlap
(DataObject isa Resource)

Enterprise Architecture based on Design Primitives Business Transformation Agency 12/17/2009 47

Enterprise Architecture based on Design Primitives Business Transformation Agency 12/17/2009 48

9 Appendix B: BPMN Low-Level Design Patterns

The BPMN Low-Level Design Patterns are derived from the underlying BPMN primitives as elementary design
patterns. Additional guidance on rationale and modeling style using these „low-level‟ patterns is provided in the
Modeling Guide in section 5. Table 9-1 identifies the initial set of low-level BPMN design patterns and describes
their relationship to core elements of the DoDAF V2.0 Meta Model (DM2).

Table 9-1 Derivative BPMN Modeling Patterns for OV-6C

Derivative OV-6C

Semantics

BPMN Pattern DM2 Element

Sequence

Activity A must
complete before
Activity B can
start. A
sequence flow
indicates a
dependency
between two
activities, either
through a shared
performer or the
exchange of
data.

Activity; ActivityBeforeAfter

Parallel Split
(AND)

After
completion of
Activity A both
Activity B and
Activity C can
start
independent of
each other. Note
the AND split
does not imply
that B and C
have to occur at
the same time.

Activity; ActivityBeforeAfter;

Rule;
RuleConstrainsActivity(downstrea

m activities)

Exclusive
Choice Split
(XOR)

After
completion of
Activity A either
Activity B or
Activity C can
start (but not
both),
depending on
the truth values
of Conditions 1
and 2. Only one
outgoing
sequence flow
can evaluate to
true.

Activity; ActivityBeforeAfter;

Rule;
RuleConstrainsActivity(downstrea

m activities)

Enterprise Architecture based on Design Primitives Business Transformation Agency 12/17/2009 49

Derivative OV-6C

Semantics

BPMN Pattern DM2 Element

Inclusive
Choice Split
(OR)

After
completion of
Activity A either
Activity B or
Activity C or
both Activity B
and C can start,
depending on
the truth values
of Conditions 1
and 2. Multiple
outgoing
sequence flows
can evaluate to
true.

Activity; ActivityBeforeAfter;

Rule;
RuleConstrainsActivity(downstrea

m activities)

Event-Based
Exclusive
Choice Split
(XOR)

After
completion of
Activity A the
process will halt
until one of the
subsequent
events occurs.
Only one
outgoing
sequence flow
from the Event-
based Gateway
can evaluate to
true.

Activity; ActivityBeforeAfter;

Event;

Rule;
RuleConstrainsActivity(downstrea

m activities)

Synchronized
Join (AND)

The process will
halt at the AND
join until both
Activity A and
Activity B are
completed. All
incoming
sequence flows
must send a
token before the
process
continues.

Activity; ActivityBeforeAfter;

Rule;
RuleConstrainsActivity(downstrea

m activities)

Unsynchronize
d Join (XOR)

The process will
halt at the
XORjoinuntil
either Activity A
or Activity B is
completed. If
multiple
incoming
sequence flows

Activity; ActivityBeforeAfter;

Rule;
RuleConstrainsActivity(downstrea

m activities)

Enterprise Architecture based on Design Primitives Business Transformation Agency 12/17/2009 50

Derivative OV-6C

Semantics

BPMN Pattern DM2 Element

send tokens, the
process may
create multiple
instances of
downstream
activities
(dependent
upon particular
BPMN
implementation)
.

Synchronized
Join (OR)

The process will
halt at the OR
join until both
Activity A and
Activity B are
completed. At
least one
incoming
sequence flow
has to send a
token before the
process
continues.

Activity; ActivityBeforeAfter;

Rule;
RuleConstrainsActivity(downstrea

m activities)

